شعار
وطن

غرفة اختبار الرطوبة

غرفة اختبار الرطوبة

  • Lab Companion Equipment Selection | Core Parameter Comparison: Temperature Test Chamber vs. Thermal Shock Test Chamber Lab Companion Equipment Selection | Core Parameter Comparison: Temperature Test Chamber vs. Thermal Shock Test Chamber
    Feb 06, 2026
    In environmental reliability testing, temperature test chambers and thermal shock test chambers are two core instruments designed to verify the performance stability of products under extreme temperature conditions. However, they differ significantly in temperature change mode, test objectives, core parameters, and application scenarios. As a national high-tech enterprise with over 20 years of industry experience, Lab Companion. leverages mature R&D and manufacturing capabilities to provide comprehensive environmental testing solutions across multiple industries. This article compares the two types of chambers from three dimensions: core parameters, structural design, and application scenarios, and offers targeted selection advice based on Lab Companion’s product features to help enterprises select the optimal testing equipment. 1. Core Performance Parameters: Fundamental Difference Between Gradual & Sudden Temperature Change The core distinction between the two instruments lies in their design positioning for temperature change modes: • Temperature Test Chamber: Gradual temperature change, steady-state constant temperature • Thermal Shock Test Chamber: Sudden temperature shock, rapid switching 1.1 Temperature Range & Temperature Change Rate Temperature Test Chamber • Temperature range: Standard -70℃ ~ 150℃; customizable up to -100℃ ~ 200℃ • Temperature change feature: Average gradual rate; standard heating ≈ 5℃/min, cooling ≈ 3℃/min • Rapid temperature change model: Equipped with dual-stage compression + eco-friendly refrigerant, with a rate of up to 20℃/min, suitable for accelerated aging tests Lab Companion Thermal Shock Test Chamber (TS Series) • Temperature range: Standard -65℃ ~ 150℃; customizable to -80℃ ~ 200℃ • Core advantage: Instant temperature switching (instead of average rate) • Two-zone (TS2): Temperature transfer time ≤ 30 seconds, ≤ 10 seconds for small samples • Three-zone (TS3): Equipped with pre-heating & pre-cooling chamber design, featuring higher switching efficiency and more stable shock performance 1.2 Temperature Uniformity & Fluctuation Temperature Test Chamber • Focuses on the accuracy of steady-state temperature field • No-load uniformity ≤ ±2℃ (up to ±1.5℃) • Fluctuation ≤ ±0.5℃; precision model up to ±0.3℃ • Ideal for long-term constant temperature and cyclic gradual change tests Thermal Shock Test Chamber • Slightly wider stability tolerance due to frequent temperature switching • Uniformity ≤ ±1.5℃ • Fluctuation: Three-zone ≤ ±0.3℃, Two-zone ≤ ±0.5℃ • Equipped with dedicated PID algorithm for dynamic temperature control, reducing overshoot and ensuring consistent shock accuracy 1.3 Core Parameter Comparison (Compact Version) Parameter Temperature Test Chamber Thermal Shock Test Chamber (TS Series) Temperature Range Standard: -70℃ ~ 150℃;Custom: -100℃ ~ 200℃ Standard: -65℃ ~ 150℃;Custom: -80℃ ~ 200℃ Temperature Change Gradual change, average 0.5~20℃/min Sudden thermal shock, transfer ≤ 30s, recovery ≤ 5min Uniformity / Fluctuation Uniformity ≤ ±2℃ (±1.5℃), Fluctuation ≤ ±0.5℃ Uniformity ≤ ±1.5℃, Fluctuation ±0.3~±0.5℃ Cycle Programming 1~999 programmable cycles, multi-segment curves 1~999 adjustable cycles, supports continuous shock 2. Structural & System Design: Differentiated Architectures for Diverse Temperature Change Needs 2.1 Refrigeration System Temperature Test Chamber • Above -40℃: Single-stage compression refrigeration • Low-temperature range: Dual-stage cascade system with imported brand compressors • Full-capillary automatic load regulation, ensuring precise temperature control and over 30% lower energy consumption Thermal Shock Test Chamber (TS Series) • Binary cascade air-cooled refrigeration system (high-temperature + low-temperature circuits) • Adopts eco-friendly refrigerants R23/R404A, compliant with environmental protection regulations • Mean Time Between Failures (MTBF) > 8,000 hours 2.2 Chamber & Air Duct Design Temperature Test Chamber • Single-chamber structure, inner tank made of SUS304 mirror stainless steel • High-density polyurethane foam + silicone rubber seal, achieving superior thermal insulation performance • 3D circulating air duct (top supply, bottom return), ensuring uniform temperature field and high versatility Thermal Shock Test Chamber • Two-zone (TS2): Equipped with pneumatic basket for direct sample transfer between hot and cold chambers; compact structure and cost-effective • Three-zone (TS3): Additional intermediate transition chamber to reduce hot-cold air interference, lower temperature loss and improve precision – ideal for precision samples • Inner tank: SUS304 stainless steel; outer cabinet: anti-corrosion electrolytic plate with paint finish 2.3 Control System Temperature Test Chamber • Siemens PLC + 7-inch touchscreen • 100+ programs storage, 99 segments per program • Segmented PID + AI adaptive control, with 99.5% data repeatability Thermal Shock Test Chamber • Youyi E-560/600 or 7.5-inch color touchscreen • 96 program storage slots, embedded PLC for dynamic load adaptation • Standard RS-232/RS485 interface, supporting data export and remote monitoring 3. Test Functions & Application Scenarios: Precise Matching for Industry Testing Needs 3.1 Temperature Test Chamber: General-Purpose Gradual Temperature Change Testing Core Purpose Simulate gradual temperature environments such as diurnal temperature variation and seasonal alternation; support constant temperature, high-low temperature cycling, and multi-segment programmable testing. Applicable Industries • Standard model: Consumer electronics, home appliances, plastics, hardware, and other general temperature resistance verification • Rapid temperature change model: New energy, automotive electronics, 5G communications, aerospace, and other accelerated aging & cyclic reliability tests • Customizable: Explosion-proof, anti-corrosion, large-volume, low-humidity, and other special working conditions 3.2 Thermal Shock Test Chamber: Severe Sudden Temperature Change Testing Core Purpose Simulate instantaneous extreme temperature changes during transportation or operation; evaluate cracking, failure, and performance drift caused by thermal expansion and contraction of materials. Applicable Industries • Aerospace: Instant temperature change between high altitude and ground • Automotive components: Shock from cold start to high-temperature driving • Harsh reliability verification for electronics, metals, rubber, military, and other fields • Two-zone: Suitable for scenarios with limited budget and general thermal shock requirements • Three-zone: Suitable for high-standard requirements (ISO, GB/T, etc.) in precision electronics, military, and other fields 4. Core Selection Logic & Precautions Selection Priority: Demand Matching > Blind High Configuration By Temperature Change Mode • Gradual change & long-term steady state → Choose temperature test chamber • Instant sudden change & thermal shock → Choose thermal shock test chamber By Industry & Standards • Consumer electronics, home appliances, basic materials → Temperature test chamber for better cost performance • New energy, automotive, aerospace, military → Rapid temperature change chamber or three-zone thermal shock chamber By Budget & Maintenance • Temperature test chamber: Simple structure, low procurement and maintenance costs • Thermal shock test chamber: Multi-chamber + cascade refrigeration, with slightly higher cost and maintenance requirements Safety & After-Sales (Lab Companion Standard) • 12 safety protection functions: Over-temperature, overload, compressor overheating, water shortage, fan failure, etc. • National after-sales service network, providing regular maintenance guidance to ensure long-term stable operation Conclusion Temperature test chambers and thermal shock test chambers are not substitutes but complementary for different scenarios: • Temperature Test Chamber: General-purpose, gradual change, steady state, cost-effective • Thermal Shock Test Chamber: Severe, sudden change, shock-resistant, high-reliability verification By combining product characteristics, industry standards, and test objectives with <span
    إقرأ المزيد
  • Complete Analysis of High-Low Temperature Test Chamber Functions: Constant Temperature / Cycling / Programmable – How to Choose? Complete Analysis of High-Low Temperature Test Chamber Functions: Constant Temperature / Cycling / Programmable – How to Choose?
    Feb 04, 2026
      The three core functions of high-low temperature test chambers—constant temperature, high-low temperature cycling, and programmable operation—extensively cover environmental reliability testing requirements across industries including electronics, automotive, military, photovoltaic, and more. As a high-tech enterprise with over 20 years of expertise in environmental reliability testing equipment, Lab Companion specializes in the R&D and manufacturing of environmental test equipment. Its products feature precise temperature control and customizable capabilities to adapt to diverse industry applications. Understanding the core operation, practical techniques, and selection logic of each function enables precise matching to different test scenarios, effectively improving test efficiency and data reliability. Based on Lab Companion’s mature product technologies and industry practical experience, we provide the following concise professional guide. 1. Constant Temperature Test: Basic Temperature Resistance Verification Core Purpose Used for long-term performance testing of products under a single extreme temperature condition. It is the most common basic test mode for mass quality inspection and preliminary R&D, with easy operation and strong versatility. Typical Applications - High-temperature aging test of semiconductor components at 85°C- Low-temperature embrittlement verification of automotive rubber seals at -40°C- Constant-temperature storage stability testing of in vitro diagnostic reagents for medical devices at 50°C Key Operational Points - Prioritize models with temperature fluctuation ≤ ±0.5°C and uniformity ≤ ±2°C; high-precision versions achieve ±0.1–±0.3°C.- Standardized sample placement: sample volume ≤ 1/3 of working chamber volume, distance from chamber walls ≥ 5 cm to avoid blocking air ducts and compromising temperature uniformity. Product Features (Lab Companion) - Inner chamber made of SUS304 mirror-finish stainless steel for corrosion resistance and easy cleaning.- High-density polyurethane foam insulation and high-strength heat-resistant silicone gaskets minimize heat exchange and enhance temperature stability.- Custom ultra-low temperature models below -100°C available for military applications, fully compliant with GJB military standards. 2. High-Low Temperature Cycling Test: Thermal Cycling Reliability Testing Core Purpose Simulates temperature alternating environments such as day-night temperature differences, regional transportation, and seasonal changes encountered in real-world use. It rigorously verifies structural strength and performance stability, with stricter evaluation than constant temperature testing. Typical Applications - Thermal cycling test of new energy vehicle power batteries from -30°C to 85°C (simulating winter-summer conditions)- High-low temperature cycling verification of photovoltaic modules- Wide-temperature-range alternating performance testing of aerospace composite materials Key Operational Points - Standard models: heating rate up to 5°C/min, cooling rate up to 3°C/min.- High-performance models: two-stage compression refrigeration + eco-friendly refrigerant, stable temperature change rate up to 20°C/min, greatly shortening test cycles.- Enable PID auto-tuning to limit temperature overshoot within 0.8°C for accurate data. Product Features (Lab Companion) - Equipped with Balanced Temperature Control (BTHC) system for precise execution of preset cycling programs, preventing damage from sudden temperature changes.- Full-capillary automatic load adjustment system delivers higher accuracy and stability than conventional expansion valves, while reducing energy consumption by more than 30%. 3. Programmable Test: Automated Simulation of Complex Working Conditions Core Purpose Supports multi-segment linked programming of temperature and time parameters, enabling fully automatic operation of complex test sequences without manual supervision. Ideal for customized R&D testing and standardized quality inspection. Typical Applications - Multi-region temperature environment simulation for 5G base station PCBs- 1000-hour long-term cyclic aging testing of electronic components- Multi-temperature gradient verification for military-grade products Key Operational Points - Select models supporting at least 100 program groups (expandable to 200), with up to 99 segments per program.- Set segmented PID parameters according to thermal inertia differences between high and low temperature ranges for improved full-range accuracy. Product Features (Lab Companion) - Siemens PLC control + 7-inch color touchscreen for intuitive and stable operation.- AI adaptive algorithm ensures test data repeatability up to 99.5%.- Supports USB, RS485, and Ethernet communication for remote monitoring and real-time data export.- Automatically generates GLP-compliant test reports; power-off memory function resumes testing automatically after power restoration to prevent data loss. 4. Selection & Operation Guidelines 1. Selection Logic - Basic quality inspection: Choose constant temperature models for optimal cost-effectiveness.- Product reliability validation: Select cycling models; fast temperature change versions recommended for new energy and automotive industries.- R&D or complex conditions: Choose programmable models.- Military & aerospace: Custom options available for low pressure, explosion-proof, and other non-standard functions. 2. Safety & Maintenance - Equipment must include multiple protections: over-temperature, overload, compressor overheating, etc.- Regularly clean air ducts, inspect door gaskets, and calibrate temperature sensors every 3–6 months to extend service life and maintain accuracy. 3. Customization Options Optional accessories available based on industry needs: test ports, data loggers, explosion-proof chambers, water purification systems, etc., to meet special testing requirements in medical, chemical, military, and other fields. Conclusion The three core functions of high-low temperature test chambers provide complete testing coverage from basic verification to high-precision simulation. By selecting the appropriate function based on product characteristics, industry standards, and test requirements—paired with equipment featuring precise temperature control, stable performance, and customization—along with standardized operation and maintenance, users can maximize equipment value and provide reliable assurance for product quality.
    إقرأ المزيد
  • Safety Protection Devices of High and Low Temperature Humidity Test Chamber Safety Protection Devices of High and Low Temperature Humidity Test Chamber
    Dec 25, 2025
    1. Refrigeration System Protection - Compressor Overpressure Protection: Real-time monitors compressor internal pressure. Automatically triggers protection when pressure exceeds the safety threshold to avoid overpressure damage and ensure stable refrigeration system operation. - Compressor Overheating Protection: Equipped with overheating detectors to sense compressor operating temperature. Immediately cuts off the circuit when overheated to prevent winding burnout and extend equipment service life. - Compressor Overcurrent Protection: Monitors compressor current via a detection module. Rapidly cuts off power when current is abnormally high to avoid damage to the compressor and related electrical components. - Refrigerant Pressure and Overload Protection Device: Monitors refrigerant circulation pressure to prevent system damage from leakage or abnormal pressure; protects against refrigeration system overload to ensure safe operation. 2. Test Chamber Protection - Adjustable Overtemperature Protection: Flexibly sets overtemperature thresholds to adapt to different samples' temperature tolerance. Triggers protection promptly when the test chamber temperature reaches the set threshold. - Three-Layer High-Temperature Overtemperature Protection: Hierarchical design: 1) Basic overtemperature protection linked with test control logic; 2) Electronic device for fast response; 3) Ultimate barrier to cut off heat source under extreme high temperature, ensuring sample and equipment safety. - Fan Motor Overcurrent Protection: Provides overcurrent protection for circulating fan motor. Cuts off power quickly when current exceeds standard due to abnormal load or jamming to prevent burnout and ensure normal temperature uniformity circulation. - Fault Abnormality Protection: Monitors equipment operation. Cuts off control power immediately to prevent fault expansion when abnormalities (e.g., temperature runaway, motor failure) occur; outputs fault indication and alarm signals for quick troubleshooting. - Active Water Shortage Prompt: Equipped with water level sensor. Issues acousto-optic prompt when water level is too low, reminding timely replenishment to avoid test disruption or humidification component damage. - Dynamic High and Low Temperature Protection: Intelligent adaptive adjustment. Dynamically modifies protection values according to test temperature curve to ensure test smoothness and intervene promptly in abnormal temperature fluctuations, improving safety and accuracy. 3. Other Protections - Main Power Phase Sequence and Phase Loss Protection: Monitors power phase sequence and phase presence. Cuts off main power immediately on phase sequence error or loss to prevent motor reversal and electrical component burnout, ensuring overall electrical safety. - Short Circuit Protection: Equipped with short circuit protectors. Fuses or trips quickly to cut off fault circuit when short circuit occurs, avoiding fires and equipment damage. - Leakage/Surge Prevention Protection: Multi-layer design: leakage circuit breaker ensures operator safety; FUSE and RC electronic components suppress grid surges, protecting precision electronic parts. - Controller Internal Automatic Detection Protection: Real-time detects core temperature/humidity sensor. Triggers protection and fault prompt on sensor abnormality to avoid test deviation or equipment misoperation. - Water Cutoff and Dry Burning Protection: Dual protection: prevents humidification system damage from water cutoff idling; avoids electric heating component burnout in water-free state, ensuring humidification and heating system safety. - Expansion Protection Device: Reserves two fault detection input interfaces for additional protection components or upgrades, enhancing system expandability and adaptability. Summary The test chamber's safety protection devices form a comprehensive, multi-level system covering refrigeration, test chamber and electrical systems. Integrating real-time monitoring, early warning and rapid response, they effectively prevent equipment damage from abnormalities (overpressure, overheating, etc.), protect samples and operators. Reserved expansion interfaces enhance flexibility and adaptability, ensuring stable, safe and reliable operation under various conditions.
    إقرأ المزيد
  • Common Faults and Practical Solutions for High-Low Temperature Humidity Test Chambers
    Nov 19, 2025
    High and low temperature humidity test chambers are key reliability testing equipment, widely used in electronics, automotive and biomedicine. Their stability directly affects test accuracy. This article summarizes common faults and solutions for efficient troubleshooting. I. Temperature-related Faults: Core Impact on Test Accuracy 1. Failure to Reach Set Temperature Fault Performance: Fails to reach target temperature when heating; slow or no cooling.Possible Causes: Abnormal power voltage, burned heater, compressor failure, fan stop, air duct blockage.Solutions: Verify power matches rated specs (220V/380V); check fan operation and clean duct debris; contact professionals to replace faulty parts if heater/compressor fails. 2. Large Temperature Fluctuation and Poor Uniformity Fault Performance: Excessive temperature difference in the chamber or frequent fluctuations near set value.Possible Causes: Abnormal fan speed, damaged air duct seals, over-dense samples blocking airflow.Solutions: Arrange samples for ventilation; check fan stability and replace damaged seals promptly. 3. Severe Temperature Overshoot Fault Performance: Temperature overshoots set value significantly before dropping.Possible Causes: Improper controller settings, energy regulation system failure.Solutions: Restart to reset parameters; if unresolved, have technicians calibrate controller or overhaul regulation modules. II. Humidity-related Faults: Directly Linked to Test Environment Stability 1. Failure to Reach Set Humidity Fault Performance: Slow or no humidification.Possible Causes: Empty humidification tank, faulty water level sensor, burned humidifier tube, blocked solenoid valve.Solutions: Replenish water; clean valve filter; replace tube or repair sensor if humidifier fails to heat. 2. High Humidity That Cannot Be Reduced Fault Performance: Humidity remains above set value; dehumidification fails.Possible Causes: Faulty dehumidification system, poor chamber sealing, high ambient humidity.Solutions: Check door seals and reduce ambient humidity; report for repair if dehumidification module fails. 3. Abnormal Humidity Display Fault Performance: Humidity reading jumps, disappears or deviates greatly from reality.Possible Causes: Aging humidity sensor, contaminated probe.Solutions: Wipe probe with clean cloth; calibrate or replace sensor if inaccuracy persists. III. Operation and Circulation Faults: Ensure Basic Equipment Operation 1. Fan Not Rotating or Making Abnormal Noise Possible Causes: Motor damage, foreign objects in fan blades, worn bearings.Solutions: Clean debris after power-off; replace motor or bearings if fault persists. 2. Compressor Abnormality Fault Performance: Compressor fails to start or stops frequently after starting.Possible Causes: Power phase loss, overload protection trigger, refrigerant leakage.Solutions: Check three-phase wiring; retry after overload reset; report for refrigerant and compressor inspection if fault recurs. 3. Equipment Alarm Fault Performance: Alarms like "phase loss" or "overload" activate.Possible Causes: Triggered protection from wrong phase sequence, unstable voltage or overheated components.Solutions: Troubleshoot per alarm; restart after 30-minute cooldown for overload; report if ineffective. IV. Core Notes 1. Always power off before troubleshooting to avoid shock or component damage.2. Contact professionals for complex repairs (compressors, refrigerants, circuit boards); do not disassemble yourself.3. Regularly clean air ducts, filters and sensors to reduce over 80% of common faults.
    إقرأ المزيد
  • Have You Completed These Critical Checks Before Delivering a High-Low Temperature Humidity Test Chamber?
    Nov 15, 2025
    1. Preparation for Load-bearing and Dimensional Adaptation • The load-bearing capacity of the site floor shall strictly meet the core requirement of ≥500kg/m², which is a key prerequisite for ensuring the long-term stable operation of the equipment and avoiding equipment deformation or safety hazards caused by insufficient load-bearing capacity. • It is necessary to accurately confirm the external dimensions of the test chamber specified in the technical specification in advance. Combined with the on-site actual survey of the transportation and installation path, ensure that the equipment can smoothly pass through all key passage nodes such as elevators, laboratory doors and corridors, so as to avoid delay in delivery and installation due to inconsistent dimensions. 2. Preparation for Installation Site Conditions • The floor of the installation site shall be flat without protrusions and depressions, and the ventilation conditions shall meet the basic standards for equipment operation. At the same time, there shall be no flammable, explosive, corrosive gases or dust in the environment, as such substances will seriously affect the service life of equipment components and the accuracy of test data. • Strong electromagnetic radiation sources such as high-voltage lines and large motors should be actively avoided near the equipment installation location, as strong electromagnetic interference may cause disorder of the equipment control system, thereby affecting the temperature and humidity control accuracy of the test chamber. • A floor drain that meets the drainage standards must be provided within 2 meters of the equipment's refrigeration unit. This requirement is to timely discharge the condensed water generated during the operation of the refrigeration system, so as to avoid water accumulation soaking the equipment or polluting the site environment. • Sufficient maintenance and operation space shall be reserved around the equipment in accordance with specifications. The specific requirements strictly follow the following standards: Area A ≥80cm, Area B ≥60cm, Area C ≥110cm, Area D ≥110cm. Sufficient space is a necessary guarantee for later equipment maintenance, calibration and component replacement.
    إقرأ المزيد
  • High-Low Temperature and Humidity Test Chamber: Comprehensive Safety Protection
    Nov 14, 2025
    Widely used in electronics, automotive, aerospace, etc. It tests product reliability by simulating extreme environments and is key equipment for product quality and safety. 1. Refrigeration system safety protection Compressor overpressure protection: Activates pressure relief when overpressure, preventing explosion and ensuring safety. Compressor overheating protection: Monitors temperature in real time, cuts power when exceeding threshold to avoid burnout and extend life. Compressor over-current protection: Monitors current, cuts power when exceeding rated value to prevent overload or motor damage. 2. Test area safety protection Adjustable over-temperature protection: Flexible threshold setting, automatically controls temperature (reduces power, starts cooling) when exceeding, protecting samples and equipment. First-layer high/low temperature over-temperature protection: Sets high/low temperature protection values for operating temperature, stops heating/cooling when exceeding range. Second-layer high-temperature over-temperature protection: Electronic device with high-precision detection, cuts heating power when exceeding first-layer range. Third-layer high-temperature over-temperature protection: Last barrier, cuts all heating power and alarms when first two layers fail. Fault protection: Cuts control power when faulty, indicates cause and outputs alarm for easy troubleshooting. 3. Other safety protections Total power phase sequence and open-phase protection: Monitors phase sequence and open-phase, cuts power when abnormal to prevent damage. Short-circuit protection: Quickly cuts circuit (fuse blowing, breaker tripping) during short circuit to avoid fire, etc. Leakage/surge protection: ELB prevents electric shock, fuse protects circuit, RC device suppresses surges. Water-cut and dry-burning protection: Cuts power for humidity-related equipment and electric heating when water is cut off to prevent dry burning. 4. Summary     The safety protection system of the high-low temperature and humidity test chamber covers core working units and key auxiliary links, forming a comprehensive and multi-level protection closed loop. Through accurate monitoring, rapid response and effective intervention, each protection device not only ensures the long-term stable operation of the equipment and extends its service life, but also safeguards the safety of test samples and personnel operation. It serves as the core support for reliable test processes and accurate results, building a solid safety barrier for product quality verification.
    إقرأ المزيد
  • Differences between High and Low Temperature Test Chamber and Constant Temperature Test Chamber
    Nov 13, 2025
        In environmental reliability testing, high-low temperature humidity test chambers and constant temperature and humidity test chambers are easily confused due to similar names, but they differ significantly in testing capabilities, applications and technical characteristics. Accurate distinction and selection are key to ensuring valid test data. This blog will analyze the core differences and provide selection suggestions. I. Core Definition: Essential Distinction of Functional Boundaries     The core difference between the two starts with functional positioning, which directly determines the applicable scenarios.     The core of the constant temperature and humidity test chamber is "maintaining stability". It can accurately control and maintain the set temperature and humidity for a long time, and is used to simulate the long-term performance of products in specific environments, such as electronic component stability testing and textile temperature-humidity sensitivity testing. Its core requirement is "steady-state environmental performance verification".     The high-low temperature humidity test chamber focuses on "dynamic simulation". In addition to precise temperature and humidity control, it has a wide-range fluctuation capability, which can simulate environments such as high-low temperature cycles and alternating humidity and heat, such as extreme temperature differences during product transportation and diurnal temperature-humidity changes of outdoor equipment. Its core requirement is "dynamic environmental reliability verification". II. Key Differences: Multi-dimensional Analysis from Technology to Application 1. Temperature and Humidity Range and Fluctuation Capacity     The constant temperature and humidity chamber has a mild temperature and humidity range (temperature 0℃-100℃, humidity 30%-95%RH) and high control precision (temperature fluctuation ±0.5℃, humidity ±2%RH), but no extreme temperature-humidity impact capability.     The high-low temperature humidity chamber has a wider temperature and humidity coverage (temperature -70℃~200℃, humidity 10%-98%RH) and rapid change capability (heating rate 3℃/min-15℃/min, cooling rate 1℃/min-10℃/min), which can realize rapid cycle switching between "high temperature and high humidity - low temperature and low humidity"—a feature unavailable in the former. 2. Differences in Core Technical Architecture     The constant temperature and humidity chamber adopts single-stage compression refrigeration, conventional resistance heating, and steam or ultrasonic humidification. Its system design focuses on "energy saving and stability", with simple structure and low operating cost.     To meet extreme needs, the high-low temperature humidity chamber uses cascade refrigeration, rapid-heating tubes, and its humidity system includes a fast-response dehumidification module, with a thicker insulation layer on the chamber wall. Its technical complexity and manufacturing cost are much higher than the former. 3. Applicable Scenarios and Testing Purposes     The constant temperature and humidity chamber is used for steady-state environmental adaptability testing, such as electronic component aging and pharmaceutical storage simulation, to verify the performance consistency and durability of products in a fixed environment.     The high-low temperature humidity chamber focuses on dynamic reliability testing, such as high-low temperature cycling of auto parts and extreme environment simulation of aerospace products, to expose product defects (material aging, structural deformation, etc.) under drastic environmental changes.     In summary, the constant temperature and humidity chamber guards the steady-state environment, while the high-low temperature humidity chamber challenges the dynamic environment. There is no absolute advantage or disadvantage between the two. Only by matching needs, clarifying scenarios and budgets can the test truly guarantee product quality.
    إقرأ المزيد
  • How is over-temperature protection carried out in a temperature test chamber?
    Oct 23, 2025
    The over-temperature protection of the temperature test chamber is a multi-level and multi-redundant safety system. Its core purpose is to prevent the temperature inside the chamber from rising out of control due to equipment failure, thereby protecting the safety of the test samples, the test chamber itself and the laboratory environment.   The protection system usually consists of the following key parts working together: 1. Sensor: The main sensor is used for the normal temperature control of the test chamber and provides feedback signals to the main controller. An independent over-temperature protection sensor is the key to a safety system. It is a temperature-sensing element independent of the main control temperature system (usually a platinum resistance or thermocouple), which is placed by strategically at the position within the box that best represents the risk of overheating (such as near the heater outlet or on the top of the working chamber). Its sole task is to monitor over-temperature. 2. Processing unit: The main controller receives signals from the main sensor and executes the set temperature program. The independent over-temperature protector, as an independent hardware device, is specifically designed to receive and process the signals from the over-temperature protection sensor. It does not rely on the main controller. Even if the main controller crashes or experiences a serious malfunction, it can still operate normally. 3. Actuator: The main controller controls the on and off of the heater and the cooler. The safety relay/solid-state relay receives the signal sent by the over-temperature protector and directly cuts off the power supply circuit of the heater. This is the final execution action.   The over-temperature protection of the temperature test chamber is a multi-level, hard-wire connected safety system designed based on the concepts of "redundancy" and "independence". It does not rely on the main control system. Through independent sensors and controllers, when a dangerous temperature is detected, it directly and forcibly cuts off the heating energy and notifies the user through sound and light alarms, thus forming a complete and reliable safety closed loop.
    إقرأ المزيد
  • اختيار موقع تركيب غرفة اختبار التغير السريع في درجة الحرارة اختيار موقع تركيب غرفة اختبار التغير السريع في درجة الحرارة
    Jun 27, 2025
    اختيار موقع تركيب غرفة اختبار التغير السريع في درجة الحرارة: يمكن للمسافة بين الجدار المجاور أن تُمكّن من تحقيق أقصى استفادة من دور وخصائص غرفة الاختبار البيئي. يجب اختيار موقع يتحمل درجة حرارة تتراوح بين 15 و45 درجة مئوية، ورطوبة بيئية نسبية تتجاوز 86%. لا ينبغي أن تتغير درجة حرارة العمل في موقع التثبيت بشكل كبير. يجب أن يتم تركيبه على سطح مستو (استخدم مستوى لتحديد المستوى على الطريق أثناء التركيب). ينبغي تثبيته في مكان لا يتعرض لأشعة الشمس. ينبغي أن يتم تثبيته في موقع يتمتع بتهوية طبيعية ممتازة. يجب أن يتم تركيبه في المناطق التي يتم فيها التخلص من المواد القابلة للاشتعال والمنتجات المتفجرة ومصادر الحرارة العالية. ينبغي أن يتم تثبيته في موقع به غبار أقل. قم بتثبيته بالقرب قدر الإمكان من مصدر الطاقة التبديلي لنظام إمداد الطاقة.
    إقرأ المزيد
  • ماذا يجب أن أفعل إذا كانت هناك مشاكل في غرفة اختبار درجة الحرارة العالية والمنخفضة؟ ماذا يجب أن أفعل إذا كانت هناك مشاكل في غرفة اختبار درجة الحرارة العالية والمنخفضة؟
    Jun 23, 2025
    غرفة اختبار درجات الحرارة العالية والمنخفضة قد تواجه مجموعة متنوعة من المشاكل أثناء عملية الاستخدام، وفيما يلي ملخص للأخطاء المحتملة وأسبابها من وجهات نظر مختلفة:1. فشل النظام الأساسيدرجة الحرارة خارجة عن السيطرةالسبب: معلمات التحكم PID غير متوازنة، درجة الحرارة المحيطة تتجاوز النطاق التصميمي للمعدات، تداخل درجة الحرارة بين المناطق المتعددة.الحالة: في ورشة عمل ذات بيئة خاصة، تتسبب درجة الحرارة الخارجية المرتفعة في زيادة تحميل نظام التبريد، مما يؤدي إلى انحراف درجة الحرارة.الرطوبة غير طبيعيةالسبب: تؤدي جودة المياه الرديئة للترطيب إلى تراكم الترسبات وانسداد الفوهة، وفشل الصفيحة الكهرضغطية للمرطب بالموجات فوق الصوتية، وعدم تجديد المجفف لإزالة الرطوبة بشكل كامل.ظاهرة خاصة: يحدث التكثيف العكسي أثناء اختبار الرطوبة العالية، مما يؤدي إلى أن تكون الرطوبة الفعلية في الصندوق أقل من القيمة المحددة.2. المشاكل الميكانيكية والهيكليةتدفق الهواء غير منظمالأداء: يوجد تدرج في درجة الحرارة يزيد عن 3 درجات مئوية في منطقة العينة.السبب الجذري: أدى رف العينة المخصص إلى تغيير تصميم مجرى الهواء الأصلي وتراكم الأوساخ على شفرة المروحة الطاردة المركزية مما أدى إلى تدمير التوازن الديناميكي. فشل الختمعطل جديد: تنخفض القوة المغناطيسية لباب الختم الكهرومغناطيسي عند درجة حرارة منخفضة، ويصبح شريط الختم السيليكوني هشًا ويتشقق بعد درجة حرارة -70 درجة مئوية.3. النظام الكهربائي ونظام التحكمفشل التحكم الذكيمستوى البرنامج: بعد ترقية البرامج الثابتة، يحدث خطأ في إعداد منطقة درجة الحرارة الميتة ويؤدي تجاوز البيانات التاريخية إلى تعطل البرنامج.مستوى الأجهزة: يؤدي تعطل مرحل الحالة الصلبة SSR إلى التسخين المستمر ويتعرض اتصال الحافلة للتداخل الكهرومغناطيسي للعاكس.ثغرات الحماية الأمنيةالمخاطر الخفية: الفشل المتزامن لمرحل حماية درجة الحرارة الثلاثية والإنذار الخاطئ الناجم عن انتهاء معايرة كاشف المبرد.4. تحديات ظروف العمل الخاصةصدمة درجة الحرارة النوعيةالمشكلة: التحويل السريع لإجهاد لحام المبخر من -40 درجة مئوية إلى +150 درجة مئوية يؤدي إلى تشقق، فرق معامل التمدد الحراري يؤدي إلى فشل ختم نافذة المراقبة.التوهين التشغيلي طويل الأمدتدهور الأداء: بعد 2000 ساعة من التشغيل المستمر، يؤدي تآكل لوحة صمام الضاغط إلى انخفاض بنسبة 15٪ في سعة التبريد وانحراف قيمة مقاومة أنبوب التسخين الخزفي.5. التأثير البيئي والصيانةتكييف البنية التحتيةالحالة: تسبب تذبذب الطاقة في سخان PTC الناجم عن تقلب جهد مصدر الطاقة وتأثير المطرقة المائية لنظام مياه التبريد في إتلاف المبادل الحراري اللوحي.الصيانة الوقائية للنقاط العمياءالدرس: تجاهل الضغط الإيجابي للصندوق يؤدي إلى دخول الماء إلى حجرة المحمل ونمو الأغشية الحيوية والانسداد في أنبوب تصريف المكثفات.6. نقاط الضعف في التقنيات الناشئةتطبيق جديد للمبردالتحديات: مشاكل توافق زيت النظام بعد استبدال R448A بـ R404A، ومشاكل إغلاق الضغط العالي في أنظمة التبريد دون الحرجة بثاني أكسيد الكربون.مخاطر تكامل إنترنت الأشياءخطأ: تم مهاجمة بروتوكول التحكم عن بعد بشكل خبيث، مما أدى إلى التلاعب بالبرنامج وفشل التخزين السحابي، مما أدى إلى فقدان سلسلة أدلة الاختبار.توصيات الاستراتيجيةالتشخيص الذكي: قم بتكوين محلل الاهتزاز للتنبؤ بفشل محمل الضاغط، واستخدم جهاز التصوير الحراري بالأشعة تحت الحمراء لمسح نقاط التوصيل الكهربائية بانتظام.تصميم الموثوقية: المكونات الرئيسية مثل المبخر مصنوعة من الفولاذ المقاوم للصدأ SUS316L لتحسين مقاومة التآكل، ويتم إضافة وحدات التحكم في درجة الحرارة الزائدة إلى نظام التحكم.الابتكار في الصيانة: تنفيذ خطة صيانة ديناميكية تعتمد على ساعات التشغيل، وإنشاء نظام اختبار نقاء المبرد السنوي.يجب تحليل حلول هذه المشكلات بالتزامن مع طراز الجهاز وبيئة استخدامه وسجلات صيانته. يُنصح بإنشاء آلية صيانة تعاونية تشمل الشركة المصنعة للمعدات الأصلية (OEM) ومؤسسات الاختبار الخارجية والفرق الفنية للمستخدمين. بالنسبة لعناصر الاختبار الرئيسية، يُنصح بتكوين نظام احتياطي مزدوج للأجهزة لضمان استمرارية الاختبار.
    إقرأ المزيد
  • ما هي معايير تسليم Lab Companion؟ ما هي معايير تسليم Lab Companion؟
    Jun 23, 2025
    (1) تركيب المعدات وتشغيلهاخدمة في الموقع: سيقوم الفنيون بتسليم البضائع مجانًا، وسيُكملون التجميع الميكانيكي والتمديدات الكهربائية واختبار الأخطاء. يجب أن تتوافق معايير اختبار الأخطاء مع درجة الحرارة والرطوبة، وكمية ترسب الملح، وغيرها من المؤشرات الواردة في الاتفاقية الفنية للعميل.معايير القبول: تقديم تقرير قياس من جهة خارجية، ويجب إرجاع المعدات غير المؤهلة أو استبدالها مباشرةً. على سبيل المثال، يجب أن يجتاز صندوق اختبار المطر اختبار القبول بنسبة 100%.(2) نظام تدريب العملاءتدريب التشغيل: يشمل بدء تشغيل المعدات وإيقافها، وإعداد البرنامج والصيانة اليومية، وهو مخصص لسيناريوهات المستخدم المختلفة مثل مؤسسات فحص الجودة ومؤسسات السيارات.التدريب على الصيانة العميقة: بما في ذلك تشخيص الأخطاء (مثل استكشاف أخطاء نظام الرطوبة في غرفة اختبار درجات الحرارة العالية والمنخفضة والرطوبة) واستبدال قطع الغيار لتحسين قدرة الصيانة المستقلة للعملاء.(3) الدعم الفني والاستجابةالاستجابة الفورية: الاستجابة لطلب الإصلاح في غضون 15 دقيقة، وحل الأخطاء الروتينية في غضون 48 ساعة (التفاوض مع المناطق النائية).التشخيص عن بعد: من خلال التوجيه بالفيديو أو برنامج الوصول عن بعد، حدد المشكلة بسرعة (مثل تركيز الغبار غير الطبيعي في غرفة اختبار الرمل).(4) توريد قطع الغيار والصيانةإعداد خطة قطع الغيار، وإعطاء الأولوية لتوريد قطع الغيار المستهلكة من الوحدات التعاونية (مثل مركز التفتيش والشهادات للسكك الحديدية في الصين، ومجموعة تكنولوجيا الإلكترونيات الصينية)، وتقليل وقت التوقف عن العمل.يعتبر الضرر غير اليدوي مجانيًا أثناء فترة الضمان، ويتم توفير الخدمات المدفوعة بعد فترة الضمان برسوم شفافة.
    إقرأ المزيد
  • الاختبار البيئي للبطارية القابلة لإعادة الشحن
    Feb 21, 2025
    بطارية قابلة لإعادة الشحن ، والتي يمكن إعادة نشاطها عن طريق الشحن بعد استخدامها. يتم استخدامها على نطاق واسع في مجالات المركبات الصديقة للبيئة ، وتخزين الطاقة ، والحقل الديناميكي.يعد الاختبار البيئي للبطارية القابلة لإعادة الشحن وسيلة مهمة لتقييم أدائها في ظل ظروف بيئية مختلفة. ⅰ. الغرض اختباريهدف الاختبار البيئي للبطارية القابلة لإعادة الشحن إلى محاكاة مختلف الشروط التي يمكن مواجهتها في بيئات الاستخدام الفعلية لتقييم موثوقية البطارية وأداء البطارية. من خلال الاختبار ، من الممكن فهم شروط العمل البطارية في ظل درجة حرارة مختلفة ، والرطوبة ، والاهتزاز ، والتأثير والظروف الأخرى ، وتوفير الأساس العلمي للبحث والتطوير وإنتاج واستخدام البطارية. ⅱ. اختبار المحتوى A. اختبار درجة الحرارة أ. اختبار درجة الحرارة العالي: غنية بيئة درجات حرارة عالية لمراقبة استقرار درجة الحرارة وخطر الهرب الحراري. ب. اختبار درجة الحرارة المنخفضة: اختبار أداء التفريغ ، وتدهور السعة ، وقدرة انخفاض درجات الحرارة المنخفضة للبطارية في ظل ظروف درجات الحرارة المنخفضة. ج. اختبار درجات الحرارة: محاكاة التغيرات في درجة الحرارة التي قد تواجهها البطارية في الاستخدام الفعلي ، وتقييم المتانة الحرارية وعمر الدورة.  ب. اختبار الرطوبة: تقييم أداء البطارية وختم ومقاومة التآكل في بيئات رطبة.  جيم - اختبار الاهتزاز: من خلال محاكاة البطارية في بيئة الاهتزاز التي قد تواجه أثناء النقل والتركيب واستخدام وتقييم سلامتها الهيكلية وموثوقية الاتصال الكهربائي واستقرار الأداء.  د.  E. اختبار الدائرة القصيرة الخارجية: اختبر أداء البطارية في ظل ظروف الدائرة القصيرة الخارجية ، بما في ذلك مخاطر الهرب الحراري والانفجار وما إلى ذلك. ⅲ. اختبار المعايير والمواصفاتيجب أن يتبع الاختبار البيئي للبطارية القابلة لإعادة الشحن معايير ومواصفات الاختبار ذات الصلة لضمان دقة نتائج الاختبار وقابليتها للمقارنة. تشمل معايير الاختبار الشائعة:IEC 62133/IEC 61960 、 UN 38.3 、 UL 1642/UL 2580 、 GB/T 31467 、 JIS C 8714 ⅳ、 معدات الاختباريتطلب الاختبار البيئي على البطارية القابلة لإعادة الشحن معدات وأساليب الاختبار المهني. تشمل معدات الاختبار الشائعة :غرفة اختبار درجة الحرارة العالية والمنخفضة: تستخدم لمحاكاة بيئات درجات الحرارة المختلفة.غرفة اختبار الرطوبة: تستخدم لتقييم أداء البطارية في البيئات الرطبة.مقعد اختبار الاهتزاز: محاكاة بيئة الاهتزاز لتقييم النزاهة الهيكلية واستقرار الأداء للبطارية.آلة اختبار التأثير: تستخدم لمحاكاة الآثار في المواقف غير المتوقعة مثل القطرات والتصادمات. ⅴ、 نتائج الاختبار والتقييمبعد الانتهاء من الاختبار ، من الضروري تحليل وتقييم نتائج الاختبار. بناءً على بيانات الاختبار والمتطلبات القياسية ، حدد ما إذا كان أداء البطارية يفي بالمتطلبات في ظل ظروف بيئية مختلفة. بالنسبة للبطارية غير المرغوب فيها ، ينبغي اتخاذ مزيد من التحليل ومقاييس التحسين المقابلة. باختصار ، يعد الاختبار البيئي للبطارية القابلة لإعادة الشحن وسيلة مهمة لضمان أدائها المستقر والموثوق في الاستخدام العملي. يمكن أن توفر أدوات الاختبار المهنية نتائج تجريبية أكثر احترافية وآمنة وعلمية وفعالة لاختبار البطارية القابل لإعادة الشحن ، مما يقلل بشكل كبير من تكلفة الاختبار وجلب الراحة للشركات.انقر للتحقق من المنتجات ذات الصلة. https://www.lab-companion.com/thermal-shock-test-chamberhttps://www.lab-companion.com/temperature-and-humidity-chamberhttps://www.lab-companion.com/rapid-temperature-cycling-test-chamber  
    إقرأ المزيد
1 2
ما مجموعه 2الصفحات

اترك رسالة

اترك رسالة
إذا كنت مهتما بمنتجاتنا وتريد معرفة المزيد من التفاصيل ، فالرجاء ترك رسالة هنا ، وسوف نقوم بالرد عليك في أقرب وقت ممكن.
إرسال

وطن

منتجات

واتس اب

اتصل بنا