شعار
وطن

المدونة

المدونة

  • High-Low Temperature and Humidity Test Chamber: Comprehensive Safety Protection
    Nov 14, 2025
    Widely used in electronics, automotive, aerospace, etc. It tests product reliability by simulating extreme environments and is key equipment for product quality and safety. 1. Refrigeration system safety protection Compressor overpressure protection: Activates pressure relief when overpressure, preventing explosion and ensuring safety. Compressor overheating protection: Monitors temperature in real time, cuts power when exceeding threshold to avoid burnout and extend life. Compressor over-current protection: Monitors current, cuts power when exceeding rated value to prevent overload or motor damage. 2. Test area safety protection Adjustable over-temperature protection: Flexible threshold setting, automatically controls temperature (reduces power, starts cooling) when exceeding, protecting samples and equipment. First-layer high/low temperature over-temperature protection: Sets high/low temperature protection values for operating temperature, stops heating/cooling when exceeding range. Second-layer high-temperature over-temperature protection: Electronic device with high-precision detection, cuts heating power when exceeding first-layer range. Third-layer high-temperature over-temperature protection: Last barrier, cuts all heating power and alarms when first two layers fail. Fault protection: Cuts control power when faulty, indicates cause and outputs alarm for easy troubleshooting. 3. Other safety protections Total power phase sequence and open-phase protection: Monitors phase sequence and open-phase, cuts power when abnormal to prevent damage. Short-circuit protection: Quickly cuts circuit (fuse blowing, breaker tripping) during short circuit to avoid fire, etc. Leakage/surge protection: ELB prevents electric shock, fuse protects circuit, RC device suppresses surges. Water-cut and dry-burning protection: Cuts power for humidity-related equipment and electric heating when water is cut off to prevent dry burning. 4. Summary     The safety protection system of the high-low temperature and humidity test chamber covers core working units and key auxiliary links, forming a comprehensive and multi-level protection closed loop. Through accurate monitoring, rapid response and effective intervention, each protection device not only ensures the long-term stable operation of the equipment and extends its service life, but also safeguards the safety of test samples and personnel operation. It serves as the core support for reliable test processes and accurate results, building a solid safety barrier for product quality verification.
    إقرأ المزيد
  • Differences between High and Low Temperature Test Chamber and Constant Temperature Test Chamber
    Nov 13, 2025
        In environmental reliability testing, high-low temperature humidity test chambers and constant temperature and humidity test chambers are easily confused due to similar names, but they differ significantly in testing capabilities, applications and technical characteristics. Accurate distinction and selection are key to ensuring valid test data. This blog will analyze the core differences and provide selection suggestions. I. Core Definition: Essential Distinction of Functional Boundaries     The core difference between the two starts with functional positioning, which directly determines the applicable scenarios.     The core of the constant temperature and humidity test chamber is "maintaining stability". It can accurately control and maintain the set temperature and humidity for a long time, and is used to simulate the long-term performance of products in specific environments, such as electronic component stability testing and textile temperature-humidity sensitivity testing. Its core requirement is "steady-state environmental performance verification".     The high-low temperature humidity test chamber focuses on "dynamic simulation". In addition to precise temperature and humidity control, it has a wide-range fluctuation capability, which can simulate environments such as high-low temperature cycles and alternating humidity and heat, such as extreme temperature differences during product transportation and diurnal temperature-humidity changes of outdoor equipment. Its core requirement is "dynamic environmental reliability verification". II. Key Differences: Multi-dimensional Analysis from Technology to Application 1. Temperature and Humidity Range and Fluctuation Capacity     The constant temperature and humidity chamber has a mild temperature and humidity range (temperature 0℃-100℃, humidity 30%-95%RH) and high control precision (temperature fluctuation ±0.5℃, humidity ±2%RH), but no extreme temperature-humidity impact capability.     The high-low temperature humidity chamber has a wider temperature and humidity coverage (temperature -70℃~200℃, humidity 10%-98%RH) and rapid change capability (heating rate 3℃/min-15℃/min, cooling rate 1℃/min-10℃/min), which can realize rapid cycle switching between "high temperature and high humidity - low temperature and low humidity"—a feature unavailable in the former. 2. Differences in Core Technical Architecture     The constant temperature and humidity chamber adopts single-stage compression refrigeration, conventional resistance heating, and steam or ultrasonic humidification. Its system design focuses on "energy saving and stability", with simple structure and low operating cost.     To meet extreme needs, the high-low temperature humidity chamber uses cascade refrigeration, rapid-heating tubes, and its humidity system includes a fast-response dehumidification module, with a thicker insulation layer on the chamber wall. Its technical complexity and manufacturing cost are much higher than the former. 3. Applicable Scenarios and Testing Purposes     The constant temperature and humidity chamber is used for steady-state environmental adaptability testing, such as electronic component aging and pharmaceutical storage simulation, to verify the performance consistency and durability of products in a fixed environment.     The high-low temperature humidity chamber focuses on dynamic reliability testing, such as high-low temperature cycling of auto parts and extreme environment simulation of aerospace products, to expose product defects (material aging, structural deformation, etc.) under drastic environmental changes.     In summary, the constant temperature and humidity chamber guards the steady-state environment, while the high-low temperature humidity chamber challenges the dynamic environment. There is no absolute advantage or disadvantage between the two. Only by matching needs, clarifying scenarios and budgets can the test truly guarantee product quality.
    إقرأ المزيد
  • Performance and Design of Faster Temperature Cycling Chambers
    Nov 12, 2025
        The faster temperature cycling chamber is one of the core flagship products of Lab Companion. Equipped with a high-power compressor, high-wind-speed test area and high-performance controller, the equipment elevates product testing to a new level, meeting the precise testing needs of various scenarios. The following is a detailed description of the performance characteristics and design highlights of this faster temperature cycling chamber: 1. Outstanding Performance     ① High-performance Controller: Features a 10.4-inch color touch screen for intuitive and convenient operation. It comes with powerful network functions and large-capacity storage, supported by a password-based access control mechanism to effectively protect sensitive data and ensure operational safety.     ②Integrated Water Circulation Humidity Module: The humidity module can be flexibly installed on the test chamber, with a built-in high-precision electronic humidity sensor that balances measurement accuracy and maintenance convenience. Equipped with a self-contained water purification and circulation system, the module requires no external water source, enabling easier use. 2. Innovative Design     ①Optimized Airflow Structure: Precise gradient control enhances humidity uniformity inside the test chamber, ensuring accurate and reliable test data. Top-mounted Air-cooled Channel: The air outlet is located at the top of the equipment, allowing rapid heat discharge through pipes and reducing the operating load of laboratory air conditioners.     ②Ergonomic Appearance: The front and side of the chamber adopt a smooth design, with a fully visible anti-condensation observation window. The reversible left/right door design adapts to different laboratory layouts, maximizing space utilization.     ③Precision Inspection Function: With a fast temperature change rate, the equipment can efficiently identify design defects of products before delivery, helping to improve product quality and reliability. Lab Companion offers a wide range of product models and sizes for selection, and also provides personalized customization services to meet customers' exclusive design requirements.
    إقرأ المزيد
  • Functional Features of the OVEN Series
    Nov 11, 2025
       OVEN is engineered to deliver high-precision temperature and pressure environments, catering to demanding applications in R&D and manufacturing. It serves a wide range of industries, including electronics, semiconductors, aerospace, and automotive. Its primary features are as follow:​ 1. User-Friendly Operation: Equipped with a large-inch photo-level true-color ultra-large touchscreen interface, the panel is provided with operation, over-temperature setting, shift/monitoring, and shutdown/reset buttons, enabling intuitive and easy operation. It comes with a standard USB interface for downloading curves and data. Operators can program after simple training, and can also independently input information such as the user unit and department, making the machine status clear at a glance.​ 2. Safety Protection: It has six major protection functions: overcurrent protection, overvoltage protection, undervoltage protection, overload protection, power module protection, and over-temperature protection. When the equipment malfunctions, it will alarm and display solutions, and activate self-protection. For low-level alarms, only personnel with specific permissions can unlock with a password to continue operation, ensuring high safety.​ 3. Accurate and Stable Core Performance of Temperature and Pressure​  ① Temperature Control: The range covers RT+10~300℃ (long-term safe use ≤260℃), with a temperature adjustment accuracy of ±0.5℃ in a vacuum environment and ±1℃ in an atmospheric environment.​  ② Vacuum Pressure Performance: The minimum vacuum degree can reach -99.9 kpa, which is accurately monitored by a semiconductor pressure sensor. PID control is also adopted to realize dynamic pressure adjustment.​  ③ Environmental Adaptability and Uniformity: Calibrated based on the conditions of 23℃ ambient temperature, rated voltage, and no test samples, it is suitable for laboratory and industrial scenarios. Some models are equipped with horizontal cross-flow air supply and three-sided circulation air ducts to ensure the temperature uniformity of the working chamber.​     Lab Companion ovens come in a comprehensive selection of sizes, types, and performance specs. Backed by free in-warranty service for non-human errors and transparent post-warranty support, we ensure lifelong operational security.
    إقرأ المزيد
  • Top Environmental Test Chamber Partner, Your Trusted Choice
    Nov 08, 2025
        Environmental test chambers simulate complex conditions such as high/low temperatures and humidity, widely serving industries including electronics, automotive, aerospace, materials, and medical devices. Their core function is to verify the tolerance of products and materials, enabling early defect detection, ensuring product reliability, facilitating industry compliance, and reducing after-sales costs. They are critical equipment for R&D and quality control.     Founded in 2005, Lab Companion specializes in the R&D and manufacturing of environmental simulation equipment. Since its establishment, the company has deeply cultivated core technologies and obtained multiple patent certifications, demonstrating strong technical capabilities in this field. Our cooperative clients cover numerous industries such as aviation, aerospace, ordnance, marine engineering, nuclear power, communications, automotive, rail transit, electronics, semiconductors, and new energy.         Lab Companion offers a comprehensive product portfolio, including high-low temperature alternating humidity test chambers, rapid temperature change test chambers, thermal shock test chambers, walk-in environmental test chambers, high-low temperature low-pressure test chambers, temperature-humidity-vibration combined test chambers, and customized non-standard environmental test equipment. Each product line provides multiple options for models, sizes, and temperature-humidity parameters to accurately meet diverse application needs.         In addition, we deliver premium pre-sales and after-sales services, offering full-cycle support from product selection to after-sales guarantee to ensure your peace of mind. Should you have any cooperation intentions or related inquiries, please feel free to contact us at any time!
    إقرأ المزيد
  • Maintenance Tips for High and Low Temperature Test Chambers​
    Nov 07, 2025
        Proper maintenance is key to stable operation and long life of high and low temperature test chambers (manufactured by Lab Companion—Guangdong Hongzhan Technology with 20 years of expertise). Before cleaning/maintenance, remove internal impurities first.​ 1. Exterior Cleaning​ Cabinet & Control Panel: Wipe with clean soft cloth; use neutral detergent for stubborn stains. Notice: Avoid corrosive chemicals.​ Power Cord & Plug: Inspect regularly for wear/cracks. Notice: Replace damaged parts promptly to prevent electrical risks.​ 2.  Internal & Accessory Maintenance​ Filters: Check and replace regularly (based on usage) to block dust and avoid performance issues.​ Water Tank & Pipes: Replace water and clean interior regularly. Notice: Use purified/distilled water to prevent scale/bacteria.​ Exhaust Fan: Inspect insulation and air duct blockages. Notice: Clean every 6 months to ensure heat dissipation.​ Temp & Humidity Sensors: Verify function periodically, and clean/replace if faulty to avoid test result errors.​ Power Distribution Room: Vacuum dust annually to protect electrical components.​ Power Distribution Box Panel: Wipe with dry cloth monthly;        never use wet cloth to prevent short circuits.​ 3. Operating Environment​ Placement: Install in dry, well-ventilated area. Notice: Avoid direct sunlight, high temp/humidity.​ Working Parameters: Operate within designed temp/humidity range. Notice: Avoid overloading to prevent damage.​ 4. Performance Testing & Calibration​ Performance Testing: Test regularly,  compare with standard equipment for accuracy.​ Calibration: Calibrate sensors/controllers periodically (at least annually, based on usage) for precision.​ 5. Record-Keeping & Operation​ Establish maintenance records for troubleshooting.         Notice: Assign dedicated staff;   follow guidelines to avoid unauthorized/improper use.​ Follow these tips to maximize your chamber's performance and lifespan for reliable lab/industrial results.         For more advice or inquiries, contact Lab Companion—your trusted environmental test equipment partner.​
    إقرأ المزيد
  • Lab Industrial High-Temperature Aging Oven
    Nov 05, 2025
    An industrial high-temperature aging oven is a device that conducts accelerated aging tests on industrial products (such as electronics, electrical appliances, components, chemical materials, etc.) by simulating high-temperature environments. By applying high-temperature stress, potential defects and faults of the products can be exposed in advance, thereby screening out early-failed products and enhancing the reliability and stability of the products leaving the factory. Its core components mainly include the heating system, circulation system, control system and safety protection system.   Main features: Firstly, it has a wide operating temperature range, typically from room temperature +10°C to +200°C or 300 °C. Temperature uniformity is a key indicator for evaluating the performance of an oven. The temperature difference at each point inside the oven is ±2°C, and the temperature control accuracy usually reaches ±0.1°C to ±1°C, ensuring the precision and repeatability of the test conditions. In addition, the heating rate can be set according to the test requirements, ranging from linear heating to rapid heating. The internal structure of the test chamber is usually made of stainless steel (such as SUS304), which is heat-resistant and corrosion-resistant. The shell is generally made of high-quality cold-rolled steel plate and the surface is treated with plastic spraying. Finally, the insulation layer is usually made of high-density aluminosilicate cotton or rock wool, with sufficient thickness to ensure that the surface temperature of the box is low and energy-saving. The air duct is designed for horizontal or vertical air supply to ensure that the hot air can flow evenly through each product under test.   Aging ovens are widely used in all industries that have high requirements for product reliability: Electronics industry: IC chips, PCB circuit boards, power supplies, chargers, LED displays/lamps, automotive electronics, etc. Electric appliances: transformers, relays, capacitors, circuit breakers, motors, etc. Communication products: mobile phones, routers, base station equipment, optical modules, etc. Chemical materials: Conduct high-temperature aging resistance tests on coatings, plastics, rubbers, adhesives, etc. Automotive parts: various sensors, controllers (ECUs), wiring harnesses, etc.   How to choose the right industrial high-temperature aging oven? When making a choice, the following factors need to be comprehensively considered: 1. Temperature range: According to the product testing standards, select the model that can meet the highest and lowest temperature requirements, and leave a certain margin. 2. Inner box size: Select an appropriate volume based on the size and quantity of the products to be tested. Remember to reserve space to ensure air circulation. 3. Temperature uniformity and accuracy: The higher the requirements, the higher the equipment cost and manufacturing difficulty. Choose according to the strictness of the test. 4. Load condition: If the product will generate heat by itself during the testing process (i.e., "load testing"), it is necessary to inform the equipment manufacturer so that they can calculate and configure sufficient heating and heat dissipation capacity. 5. Control System and Functions: Is program control (multi-stage temperature rise and heat preservation) required? Is it necessary to record and export the temperature curve data? Whether remote monitoring and other factors are needed Industrial high-temperature aging ovens are an indispensable part of modern quality engineering. Through sample aging tests, it intercepts potential faulty products before they leave the factory, significantly reducing the market return rate and after-sales maintenance costs, and earning credibility and long-term benefits for the enterprise. When making a purchase, you can communicate fully with us based on the characteristics of your own products and testing requirements, and choose the most suitable solution.
    إقرأ المزيد
  • Lab Two-Chamber Thermal Shock Chamber
    Nov 03, 2025
    The two-chamber thermal shock chamber is a highly reliable environmental testing device specifically designed for evaluating the ability of products to withstand extreme temperature changes. It simulates harsh temperature shock conditions to rapidly expose the possible failures of materials, electronic components, automotive parts and aerospace equipment during rapid thermal expansion and contraction, such as cracking, performance degradation and connection faults. It is a key tool for improving product quality and reliability. The core design concept of this device lies in efficiency and harshness. It has two independently controlled test chambers inside: a high-temperature chamber and a low-temperature chamber, which are respectively maintained at the set extreme temperatures continuously. The sample to be tested is placed in an automatic mechanical basket. During the test, the basket will be rapidly switched between the high-temperature zone and the low-temperature zone under the program control, instantly exposing the sample to a huge temperature difference environment, thus achieving the true "thermal shock" effect. Compared with another mainstream three-chamber (static) impact chamber, the significant advantage of the two-chamber type lies in its extremely fast temperature conversion speed and short temperature recovery time, ensuring the strictness and consistency of the test conditions. It is highly suitable for testing samples with sturdy structures that can withstand mechanical movement, and the testing efficiency is extremely high. Its working principle determines that during the testing process, the temperature fluctuation of the high and low temperature chamber is small, it can quickly return to the set point, and is not significantly affected by the sample load. This equipment is widely used in fields such as semiconductors, integrated circuits, national defense science and technology, automotive electronics, and new material research and development, for conducting reliability tests as required by various international standards. Its main technical parameters include a wide temperature range (high temperatures up to +150°C to +200°C, low temperatures down to -40°C to -65°C or even lower), precise temperature control accuracy, and customizable sample area sizes. The Lab two-chamber thermal shock chamber, with its irreplaceable rapid temperature change capability, has become the ultimate touchstone for testing the adaptability and durability of products in extreme temperature environments, providing a strong guarantee for the precision manufacturing and reliability verification of modern industry.
    إقرأ المزيد
  • Small Rapid Temperature Change (Wet Heat) Test Chamber
    Nov 01, 2025
    In response to the testing and R&D requirements of electronic components such as semiconductors and automotive electronics, Lab Companion has developed a smaller capacity small rapid temperature change (wet heat) test chamber. While maintaining the advantages of standard rapid temperature change test chambers, it can also meet the needs of customers who have requirements for space size, with a single-phase 220VAC voltage specification. It can also meet the equipment usage requirements of customers in civilian office areas such as research institutions and universities. Its main features are as follows: 1. It has powerful heating and cooling performance 2. Heating rate: 15℃/min; Cooling rate: 15℃/min 3. (Temperature range: -45℃ to +155℃) 4. Single-phase 220VAC, meeting the electricity demands of more customers 5. Single-phase 220VAC, suitable for industrial and civil power supply specifications, can meet the equipment power demands of customers in civil office areas such as research institutions and universities. 6. The body is small and exquisite, with a compact structure and easy to move 7. The miniaturized structure design of the test chamber can effectively save configuration space. 8. The inner tank volume is 100L, the width is 600mm, the depth is less than 1400mm, and the product volume is less than 1.1m ³. It is suitable for the vast majority of residential and commercial elevators in China (GB/T7025.1). 9. The standard universal wheels enable the product to move freely at the installation site. 10. Standard air-cooled specification is provided, facilitating the movement and installation of the product 11. At the same time, it saves customers the cost and space of configuring cooling towers. 12. A more ergonomic operation touch screen design 13. Through the multi-angle adjustment of the touch screen, it can meet the operation needs and provide the best field of vision for users of different heights, making it more convenient and comfortable. 14. Energy-saving cold output temperature and humidity control system, with dual PID and water vapor partial pressure control, features mature technology and extremely high precision. 15. Network control and data acquisition can be carried out through the interface (RS-485/GPIB/Web Lan/RS-232C). 16. It is standard-equipped with left and right cable holes (50mm), which facilitates the connection of power on the sample and the conduct of multiple measurements. 17. The controller adopts a color LCD touch screen, which is simple and convenient to operate 18. Through the controller, two control methods, fixed value and program, can be selected to adapt to different applications. 19. The program control can be set to 100 modes, with 99 steps for each mode. Repeat the loop up to 999 times. 20. Multiple languages can be easily switched (Simplified Chinese, English), and test data can be stored on a USB flash drive.
    إقرأ المزيد
  • How to Prevent Condensation when Conducting Low-temperature Tests in a Temperature Test Chamber
    Oct 30, 2025
    When conducting low-temperature tests in a temperature test chamber, preventing condensation is a crucial and common issue. Condensation not only affects the accuracy of test results, but may also cause irreversible damage to products, such as short circuits, metal corrosion, and degradation of material performance.   The essence of condensation is that when the surface temperature of the product drops below the "dew point temperature" of the ambient air, water vapor in the air condenses into liquid water on the product surface. Based on this principle, the core idea for preventing condensation is to avoid the surface temperature of the product being lower than the dew point temperature of the ambient air. The specific methods are as follows:   Controlling the rate of temperature change is the most commonly used and effective method. By slowing down the rate of cooling or heating, the temperature of the product can keep up with the changes in ambient temperature, thereby reducing the temperature difference between the two and preventing the surface temperature of the product from falling below the dew point. 2. Use dry air or nitrogen to directly reduce the absolute humidity of the air inside the test chamber, thereby significantly lowering the dew point temperature. Even if the surface of the product is very cold, as long as the dew point of the ambient air is lower, condensation will not occur. It is usually used for products that are extremely sensitive to moisture, such as precision circuit boards and aerospace components, etc. 3. Local heating or insulation can ensure that the surface temperature of key components (such as circuit boards and sensors) is always above the dew point, which is more suitable for products with complex structures where only certain areas are sensitive to humidity. 4. Skillfully arrange the temperature cycle through programming to avoid exposing the product at the stage when condensation is most likely to occur. After the test is completed, do not directly open the box door in a normal temperature and humidity environment. Dry gas should first be introduced into the box and the temperature should be slowly raised to room temperature. After the product temperature has also risen, the box can be opened and taken out.   For a typical low-temperature test, the following process can be followed to prevent condensation to the greatest extent First, place the product and the test chamber in a standard laboratory environment for a sufficient period of time to stabilize their condition. Subsequently, within the range close to room temperature to "0°", set up one or more short-term insulation platforms. Or maintain it at the target low temperature for a sufficient period of time, during which the temperature inside and outside the product is consistent, and usually no new condensation will form. Also, set a heating rate that is slower than the cooling rate. Set up an insulation platform at the initial stage of temperature rise and when approaching the ambient temperature. After the temperature rise is completed, do not open the door immediately. Keep the box door closed and let the product stand in the box for "30 minutes to 2 hours" (depending on the heat capacity of the product), or introduce dry air into the box to accelerate the equalization process. After confirming that the product temperature is close to the ambient temperature, open the box door and take out the product.   The best practice is to use the above methods in combination. For instance, in most cases, "controlling the temperature variation rate" combined with "optimizing the test program (especially during the recovery stage)" can solve 90% of the condensation problems. For military or automotive electronics tests with strict requirements, it may be necessary to simultaneously stipulate the temperature variation rate and require the introduction of dry air.
    إقرأ المزيد
  • Dragon Heat Flow Meter Temperature Control Test
    Oct 29, 2025
    Temperature control tests are usually conducted under two conditions: no-load (without sample placement) and load (with standard samples or actual samples being tested placed). The basic testing steps are as follows:   1. Preparatory work: Ensure that the heat flow meter has been fully preheated and is in a stable state. Prepare high-precision temperature sensors that have undergone metrological calibration (such as multiple platinum resistance PT100), and their accuracy should be much higher than the claimed indicators of the heat flow meter to be measured. 2. Temperature uniformity test: Multiple calibrated temperature sensors are arranged at different positions within the working area of the heat flow meter's heating plate (such as the center, four corners, edges, etc.). Set one or more typical test temperature points (such as -20°C, 25°C, 80°C). After the system reaches thermal stability, simultaneously record the temperature values of all sensors. Calculate the maximum, minimum and standard deviation of these readings to evaluate the uniformity. 3. Temperature control stability and accuracy test: Fix a calibrated temperature sensor at the center of the heating plate (or closely attach it to the built-in sensor of the instrument). Set the target temperature and start the temperature control. Record the entire process from the start to reaching the target temperature (for analyzing response speed and overshoot). After reaching the target temperature, continuously record for at least 1-2 hours (or as per standard requirements), with a sampling frequency high enough (such as once per second), and analyze the recorded data. 4. Load test: Place standard reference materials with known thermal physical properties or typical samples to be tested between the hot plates. Repeat step 3 and observe the changes in temperature control performance under load conditions. Load will directly affect the thermal inertia of the system, thereby influencing the response speed and stability.   When you are choosing or using a heat flow meter, be sure to carefully review the specific parameters regarding temperature control performance in its technical specification sheet and understand under what conditions (no-load/load) these parameters were measured. Lab will provide clear and verifiable temperature control test data and reports.
    إقرأ المزيد
  • Flame-retardant PP Materials in Industry Working Principle
    Oct 27, 2025
    Polypropylene (PP) itself is a highly flammable hydrocarbon with a limiting oxygen index (LOI) of only 17.8%. It will continue to burn even after being removed from the fire source. The core principle of flame-retardant PP is to interrupt or delay its combustion cycle through physical and chemical means. Combustion requires the simultaneous existence of three elements: combustible material, heat and oxygen. The function of flame retardants is to destroy this "burning triangle".   In industry, flame retardancy is mainly achieved by adding flame retardants to PP. Different types of flame retardants function through the following mechanisms: 1. Gas-phase flame retardant mechanism This is one of the most common mechanisms, especially applicable to traditional halogen-based flame retardants. When flame retardants are heated and decomposed, they can capture the free radicals (such as H· and HO·) that maintain the combustion chain reaction in the combustion reaction zone (flame), causing their concentrations to drop sharply and thus interrupting the combustion. 2. Condensed phase flame retardant mechanism This is the most mainstream mechanism of halogen-free flame-retardant PP. Flame retardants promote the formation of a uniform and dense carbon layer on the surface of polymers. This layer of carbon has three major functions. The first step is to prevent external heat from entering the interior of the polymer. Secondly, it prevents the escape of flammable gases inside and the entry of external oxygen. Finally, it inhibits the further pyrolysis of the polymer and the generation of smoke. When a fire occurs, the acid source promotes the dehydration, cross-linking and carbonization of the carbon source. Meanwhile, the large amount of gas produced by the decomposition of the gas source causes the softened carbon layer to expand, eventually forming a porous, dense and strong foam carbon layer, which protects the underlying PP like "armor". 3. Cooling/heat absorption mechanism Flame retardants absorb a large amount of heat during the decomposition process, reducing the surface temperature of polymers and making it difficult for them to continuously pyrolyze and produce flammable gases. Typical representatives include aluminium hydroxide (ATH) and magnesium hydroxide (MH). When they decompose, they absorb a large amount of heat (endothermic reaction) and release water vapor. The water vapor can not only dilute flammable gases but also play a cooling role. 4. Dilution mechanism Flame retardants decompose to produce a large amount of non-flammable gases (such as water vapor and CO₂, etc.), which can dilute the concentration of flammable gases and oxygen near the polymer surface, making combustion unsustainable. Both the gas sources of metal hydroxides and intumescent flame retardants have this function.   In conclusion, the working principle of flame-retardant PP in industry is a complex process involving the synergy of multiple mechanisms. Modern flame-retardant PP technology is developing towards halogen-free, low smoke, low toxicity and high efficiency. Among them, the condensed phase flame-retardant mechanism represented by intumescent flame retardants (IFR) is the core of current research and application. By carefully designing flame-retardant formulas, the best balance can be achieved among flame-retardant efficiency, material mechanical properties, processing performance and cost.
    إقرأ المزيد
1 2 3 4 5 6 7 8 9 10 21 22
ما مجموعه 22الصفحات

اترك رسالة

اترك رسالة
إذا كنت مهتما بمنتجاتنا وتريد معرفة المزيد من التفاصيل ، فالرجاء ترك رسالة هنا ، وسوف نقوم بالرد عليك في أقرب وقت ممكن.
إرسال

وطن

منتجات

واتس اب

اتصل بنا