شعار
وطن

غرفة اختبار درجة الحرارة والرطوبة

غرفة اختبار درجة الحرارة والرطوبة

  • Core Features of Multi-Layer High and Low Temperature Humidity Test Chamber Core Features of Multi-Layer High and Low Temperature Humidity Test Chamber
    Jan 20, 2026
    In the reliability testing of new energy, electronic and electrical, aerospace and other fields, the multi-layer high and low temperature humidity test chamber breaks through the limitations of traditional single-chamber equipment by virtue of structural and technological innovations, becoming a core equipment for efficient and accurate environmental simulation testing. Its core features are as follows: 1. Layered Independent Structure to Block Working Condition Interference • Adopts a vertical layered core structure with 3-5 built-in independent sealed chambers, made of 316L stainless steel for high/low temperature corrosion resistance and deformation resistance. • High-density thermal insulation materials (thermal conductivity ≤0.023W/(m·K)) are installed between layers, combined with double-channel silicone rubber seals and door gap heating defrost strips to form a strong "thermal barrier". • Practical tests confirm simultaneous operation of 80℃/95%RH (top layer) and -30℃/30%RH (bottom layer), with inter-chamber interference ≤1%, ensuring the independence and accuracy of multi-variable tests. 2. Parallel Testing Mode to Maximize Efficiency • Breaks the time-consuming bottleneck of traditional "serial testing" and realizes "spatial parallel testing" upgrade. • A four-layer equipment can simulate four different temperature and humidity conditions simultaneously; 16 sample groups complete 4-day test volume of ordinary equipment in 8 hours, improving efficiency by 12 times. • Each chamber is equipped with independent compressors, humidifiers and air duct systems, supporting parallel operation of composite working conditions (constant temperature, alternating, low temperature, etc.), shortening R&D cycles by 30% (verified by new energy enterprises). 3. Dual-Algorithm Precision Control with Excellent Data Stability • Adopts coordinated control of "PID + fuzzy control" dual algorithms, combined with high-precision capacitive sensors and temperature compensation technology. • Temperature fluctuation is stabilized at ±0.5℃, humidity deviation ≤±3%RH (up to ±2%RH for some models); multi-directional guide fans and flow equalizing plates eliminate in-chamber temperature gradient, ensuring uniform environmental impact on samples. • Fuzzy control adjusts refrigeration power quickly for sudden load changes, restoring stable conditions within 3-5 minutes and avoiding test interruption caused by temperature/humidity overshoot. 4. Intensive Energy-Saving Design to Reduce Comprehensive Costs • Optimized design of "shared main unit + layered frequency conversion" reduces floor area of a three-layer equipment to 35% of three single-chamber equipment; centralized power supply cuts line cost by 40%. • Frequency conversion module dynamically adjusts power based on chamber load, with total energy consumption 40% lower than same-capacity ordinary equipment and single-unit power ≤5kW. • Reduces per-batch test cost by over 30% for enterprises, balancing space utilization, energy conservation and operation economy. 5. Intelligent Data Management to Meet Standardized Requirements • Supports independent storage and on-screen display of layered data, generates "temperature-humidity-layer number" 3D curves, and automatically exports CNAS-certified reports to meet ISO, GB/T and other traceability standards. • High-end models are equipped with IoT modules for remote monitoring, fault early warning and connection with R&D management systems, reducing material thermal aging rate analysis error from ±8% to ±1.5% and realizing full-process digital test control. In summary, with the core advantages of "multi-chamber independence, efficient parallelism, precise control and energy-saving intensification", the equipment reconstructs environmental testing logic, provides technical support for product reliability verification, and becomes a key tool for R&D and quality control in high-end manufacturing.
    إقرأ المزيد
  • Rapid Temperature Change vs. Standard Chambers: Selection Guide & Cost Comparison Rapid Temperature Change vs. Standard Chambers: Selection Guide & Cost Comparison
    Jan 07, 2026
    High-low temperature test chambers are essential equipment in product reliability testing. However, many procurement managers struggle when choosing between standard models and rapid temperature change (RTC) models: What are the key differences? How much is the price gap? Which is more cost-effective for long-term use? This guide clarifies the core differences in performance, applications, and costs to help you make the right choice. I. Core Performance Differences: Beyond "Faster Heating/Cooling" The gap between the two is far more than just temperature rate—extending to structural design and testing capabilities. Comparison Dimension Standard High-Low Temperature Chamber Rapid Temperature Change Chamber Temperature Rate 0.7-1℃/min (standard), meeting basic testing needs 3-20℃/min (customizable), some models support linear heating/cooling Structural Design Single compressor + standard air duct, simple structure Dual-compressor cascade system + high-efficiency heat exchange module + impact-resistant structure, suitable for high-frequency temperature changes Temperature Control Precision Fluctuation ±0.5℃, uniformity ±2℃ Fluctuation ±0.3℃, uniformity ±1.5℃, no overshoot during temperature changes Core Testing Capability Complies with GB/T 2423 standard; suitable for steady-state high-low temperature storage and temperature resistance testing Simulates extreme rapid temperature change environments; supports accelerated aging testing, significantly shortening verification cycles     Standard chambers suffice for consumer electronics, small home appliances, etc. For new energy batteries, automotive components, aerospace, RTC chambers are a must—they accurately simulate severe temperature changes during transportation/use to expose product defects in advance. Example: An automotive parts enterprise reduced testing cycles from 3 months (standard chamber) to 1 month (RTC chamber), advancing product launch by 2 months. II. Cost Differences: Procurement, Operation & Maintenance RTC chambers are more expensive, but the specific cost gap and long-term expenses are detailed below: 1. Procurement Cost: 2-5x Higher, Driven by High-Quality Components For the same volume, RTC chambers cost 2-5x more than standard models. The gap stems from high-precision dual compressors, custom heating/cooling modules, and fatigue-resistant structural parts—all with higher R&D and production thresholds. 2. Operating Cost: Higher Power & Consumables RTC chambers consume 1.5-3x more power: A 100L standard chamber uses 5-8kW, while an RTC model uses 8-20kW. Electricity costs increase with usage frequency. RTC chambers also require special high-temperature heat transfer oil and eco-friendly refrigerants, with consumable costs twice that of standard models (which mainly use low-cost filters and sensor calibration). 3. Maintenance Cost: Complex Structure = Higher Requirements Standard chambers have simple structures and few wearing parts, with low annual maintenance costs (filter replacement, sensor calibration). RTC chambers require more frequent maintenance due to multiple core components and high precision; annual maintenance costs are 1.8-3x higher (e.g., dual compressor and precision control system overhauls). III. Selection Guide: Choose Based on Needs ✅ Choose Standard Chamber If: 1. You’re in consumer electronics, home appliances, toys, etc., and only need to meet GB/T 2423 standard 2. Budget is limited, pursuing cost-effectiveness, and testing frequency is low 1. Testing goals: Basic high-low temperature storage and temperature resistance verification ✅ Choose RTC Chamber If: 2. You’re in new energy, automotive, aerospace, needing to simulate extreme temperature changes • You want to shorten testing cycles and accelerate product launches • High testing requirements: Precise temperature rate control and no overshoot IV. Lab Companion: Customized Cost-Effective Solutions     As a professional test equipment manufacturer, Guangdong Hongzhan Technology offers cost-effective standard high-low temperature chambers and customizable RTC chambers (3-20℃/min) for new energy, automotive, and other industries with strict requirements.   Lab Companion provide not only equipment but also one-stop customized solutions based on your testing needs and budget—helping you clarify costs and select the right chamber for efficient, worry-free product reliability testing.   Contact us anytime for accurate quotes and customized selection plans tailored to your industry and needs!
    إقرأ المزيد
  • Core 6 Factors for Rapid Temperature Change Chamber Selection Core 6 Factors for Rapid Temperature Change Chamber Selection
    Jan 06, 2026
    Core Logic: Match testing requirements, balance performance and full life-cycle cost, and avoid over-specification for under-utilization. I. Core Testing Requirements 1. Temperature Change Rate Clarify the loaded rate and deviation requirements (e.g., ≤±0.5℃/min), and match the application scenarios: l 5–10℃/min for consumer electronics l 10–20℃/min for automotive/aerospace industries 2. Temperature & Humidity Range Cover the specified testing standards: l -40~85℃ for new energy products l -55~125℃ for aerospace products Select models with 20%–98%RH range if humidity testing is required. 3. Sample Compatibility l The chamber volume should be ≥ 3 times the sample volume. l Dynamic load compensation is required for high-heat-capacity samples (e.g., metal components). II. Hardware Performance 1. Refrigeration System Prioritize dual-compressor cascade systems equipped with imported brands (Danfoss/Copeland) and eco-friendly refrigerants (R404A/R23). 2. Air Duct & Heating System Adopt scroll diversion + baffle design, with 0–100% linear adjustment of heating tubes. 3. Sensors Use imported PT1000 sensors with a sampling frequency of ≥ 10 times/second. III. Software Functions 1. Algorithm PID closed-loop control + adaptive temperature zone compensation, supporting custom rate curve setting. 2. Data Management Automatic data recording and export (Excel/CSV format), with support for remote control and multi-channel alarm. 3. Safety Features Over-temperature protection, compressor overload protection, water shortage protection, etc. Explosion-proof pressure relief devices are mandatory for flammable and explosive samples. IV. Full Life-Cycle Cost 1. Procurement Cost Select models based on actual needs; avoid blind pursuit of high rates (the price of 10℃/min models is 1.5–2 times that of 5℃/min models). 2. Operation Cost Prefer inverter compressors to reduce electricity consumption by 15%–20%. 3. Maintenance Cost Choose models with modular structure, and confirm annual free calibration services. V. Expandability & Compatibility Support post-purchase installation of humidity, explosion-proof, and data acquisition modules. Compatible with upper computers and testing fixtures for automated testing. VI. Manufacturer Services & Qualifications Provide customized solutions and loaded rate test reports. Ensure the equipment has passed ISO 9001 and CE certifications, complying with the GB/T 2423.22 standard. Ø Selection Case Testing Scenario: Automotive motor controller testing (8kg, AEC-Q100 standard) Recommended Model: 150L chamber with 10℃/min loaded rate, -40~125℃ temperature range, and explosion-proof function. Benefits: Balances testing requirements and cost, improving testing efficiency by 4 times.
    إقرأ المزيد
  • Equipment Selection Guide: Ovens vs. Temperature Test Chambers Equipment Selection Guide: Ovens vs. Temperature Test Chambers
    Jan 04, 2026
        Equipment selection directly impacts efficiency, quality and data reliability. Standard ovens, precision ovens and temperature-humidity test chambers have distinct functional boundaries and application scenarios. Many enterprises suffer cost waste or functional insufficiency due to improper selection. This guide clarifies selection logic, breaks down matching schemes, avoids common pitfalls and provides precise guidance based on practical scenarios. 1. Core Selection Logic Adhere to the four-step framework of defining demand types → verifying temperature accuracy → supplementing environmental requirements → matching budget to clarify equipment selection boundaries. Step 1: Define Demand Types Choose oven series for process applications (drying, curing, etc.). Choose temperature-humidity test chambers for environmental reliability verification (extreme temperature variation, humidity exposure). Note: Ovens lack cooling function and cannot replace test chambers. Step 2: Verify Temperature Control Accuracy Standard ovens: Suitable for applications allowing ±5℃ temperature deviation. Precision ovens: Required for high-precision scenarios (±1℃ tolerance, e.g., electronic packaging, medical sterile drying). Temperature-humidity test chambers: Ideal for extreme environment testing, with accuracy up to ±1℃ (even ±0.5℃ for premium models). Step 3: Supplement Environmental Requirements Ovens: Applicable for ambient temperature heating only. Temperature-humidity test chambers (including humidity-controlled models): Necessary for low-temperature (-20℃ ~ -70℃), cyclic temperature variation or humidity control (e.g., 85℃/85%RH) applications. Note: Precision ovens do not support cooling or humidity control functions. Step 4: Match Budget Standard ovens (thousands of CNY): For basic drying tasks with limited budget. Precision ovens (10,000 ~ 100,000 CNY): For processes requiring high precision and stability. Temperature-humidity test chambers (100,000 ~ hundreds of thousands of CNY): For professional environmental testing; reserve budget for operation and maintenance. 2. Typical Application Scenarios: Demand-Equipment Matching This section breaks down matching schemes for three key sectors (electronics, automotive, medical & research) to provide intuitive references. Electronics Industry Simple component drying (±5℃ tolerance): Standard oven PCB solder paste curing (±0.5℃ accuracy, ±1℃ uniformity, multi-stage temperature control): Precision oven Chip cyclic testing (-40℃ ~ 125℃, data traceability required): Temperature-humidity test chamber Automotive Industry Basic part drying (±5℃ tolerance): Standard oven Sensor 24-hour aging test at 85℃ (±0.3℃ accuracy): Precision oven Battery pack rapid temperature cycling test (-40℃ ~ 85℃): Rapid temperature change test chamber Medical & Research Industry Routine consumable drying (±5℃ tolerance): Standard oven Syringe & catheter sterile drying (±0.5℃ accuracy, clean inner chamber, data traceability): Precision oven with 316 stainless steel enclosure Plastic material thermal stability study (-30℃ ~ 150℃): Temperature-humidity test chamber 3. Common Selection Pitfalls: Risk Avoidance Misconceptions often lead to wrong selections. Focus on avoiding these three key pitfalls: Pitfall 1: Using standard ovens instead of precision ovens Short-term cost reduction may cause higher product rejection rates and increased long-term costs. Solution: Always choose precision ovens for applications requiring ±1℃ accuracy; improved yield will offset the incremental cost. Pitfall 2: Using precision ovens for temperature cycling tests Ovens lack cooling capability, leading to test failure. Solution: Directly select temperature-humidity test chambers for low-temperature or cyclic temperature variation tests. Pitfall 3: Blindly pursuing high-spec test chambers Results in cost waste and underutilization of functions. Solution: Select equipment strictly based on actual test parameters to balance demand and budget. Conclusion The core of equipment selection lies in precise demand matching. Clarifying demand types and core parameters, combining scenario requirements with budget planning, and avoiding common pitfalls will maximize equipment value, support production quality improvement and boost R&D efficiency.
    إقرأ المزيد
  • مناقشة موجزة حول استخدام وصيانة غرفة الاختبار البيئي
    May 10, 2025
    1. الاستخدام الصحيح رفيق المختبرأداةتظل معدات الاختبار البيئي من الأدوات الدقيقة عالية القيمة. فالتشغيل والاستخدام الصحيح لا يوفران بيانات دقيقة لموظفي الاختبار فحسب، بل يضمنان أيضًا التشغيل العادي طويل الأمد ويطيلان عمر المعدات. أولاً، قبل إجراء الاختبارات البيئية، من الضروري الإلمام بأداء عينات الاختبار، وظروفه، وإجراءاته، وتقنياته. يُعدّ الفهم الشامل للمواصفات الفنية وهيكل معدات الاختبار، وخاصةً تشغيل وحدة التحكم ووظائفها، أمرًا بالغ الأهمية. إن قراءة دليل تشغيل المعدات بعناية تُجنّب الأعطال الناتجة عن أخطاء التشغيل، والتي قد تؤدي إلى تلف العينات أو بيانات اختبار غير دقيقة. ثانيًا، اختر معدات الاختبار المناسبة. لضمان سلاسة إجراء الاختبار، يجب اختيار المعدات المناسبة بناءً على خصائص عينات الاختبار. يجب الحفاظ على نسبة معقولة بين حجم العينة والسعة الفعلية لغرفة الاختبار. بالنسبة للعينات التي تُبدد الحرارة، يجب ألا يتجاوز الحجم عُشر السعة الفعلية لغرفة الاختبار. أما بالنسبة للعينات غير المُسخّنة، فيجب ألا يتجاوز الحجم خُمس السعة. على سبيل المثال، قد يتناسب تلفزيون ملون مقاس 21 بوصة يخضع لاختبار تخزين درجة الحرارة جيدًا مع غرفة سعة متر مكعب واحد، ولكن يلزم وجود غرفة أكبر عند تشغيل التلفزيون بسبب توليد الحرارة. ثالثًا، ضع عينات الاختبار في مكانها الصحيح. يجب وضع العينات على بُعد 10 سم على الأقل من جدران الحجرة. يجب ترتيب العينات المتعددة على نفس المستوى قدر الإمكان. يجب ألا يعيق هذا الترتيب مدخل ومخرج الهواء، ويجب ترك مساحة كافية حول مستشعرات درجة الحرارة والرطوبة لضمان دقة القراءات. رابعًا، بالنسبة للاختبارات التي تتطلب وسائط إضافية، يجب إضافة النوع الصحيح وفقًا للمواصفات. على سبيل المثال، الماء المستخدم في غرف اختبار الرطوبة يجب أن تستوفي متطلبات محددة: يجب ألا تقل المقاومة عن 500 أوم. تتراوح مقاومة ماء الصنبور عادةً بين 10 و100 أوم، والماء المقطر بين 100 و10000 أوم، والماء منزوع الأيونات بين 10000 و100000 أوم. لذلك، يجب استخدام الماء المقطر أو منزوع الأيونات لاختبارات الرطوبة، ويجب أن يكون نقيًا، لأن الماء المعرض للهواء يمتص ثاني أكسيد الكربون والغبار، مما يقلل مقاومته بمرور الوقت. تُعد المياه النقية المتوفرة في السوق بديلاً اقتصاديًا وعمليًا. خامسًا، الاستخدام السليم لغرف اختبار الرطوبة. يجب أن يفي شاش أو ورق البصيلة الرطبة المستخدم في غرف الرطوبة بمعايير محددة، وليس أي شاش بديلًا. بما أن قراءات الرطوبة النسبية تُستمد من فرق درجة حرارة البصيلة الجافة والبصيلة الرطبة (أي أنها تتأثر أيضًا بالضغط الجوي وتدفق الهواء)، فإن درجة حرارة البصيلة الرطبة تعتمد على معدلات امتصاص الماء وتبخره، والتي تتأثر بشكل مباشر بجودة الشاش. تشترط معايير الأرصاد الجوية أن يكون شاش البصيلة الرطبة من نوع "شاش البصيلة الرطبة" المتخصص المصنوع من الكتان. قد يؤدي استخدام شاش غير مناسب إلى عدم دقة التحكم في الرطوبة. بالإضافة إلى ذلك، يجب تركيب الشاش بشكل صحيح: بطول 100 مم، ملفوف بإحكام حول مسبار المستشعر، مع وضع المسبار على بُعد 25-30 مم فوق كوب الماء، وغمر الشاش في الماء لضمان دقة التحكم في الرطوبة. 2. صيانة معدات الاختبار البيئيتتوفر معدات الاختبار البيئي بأنواع مختلفة، ولكن الأكثر شيوعًا هي غرف اختبار درجات الحرارة العالية والمنخفضة والرطوبة. في الآونة الأخيرة، أصبحت غرف اختبار درجة الحرارة والرطوبة المدمجة التي تجمع بين هذه الوظائف شائعة الاستخدام. إصلاح هذه الغرف أكثر تعقيدًا، وتُعدّ أمثلةً نموذجية. نناقش أدناه هيكل غرف اختبار درجة الحرارة والرطوبة، والأعطال الشائعة، وطرق استكشاف الأخطاء وإصلاحها. (1) هيكل غرف اختبار درجة الحرارة والرطوبة المشتركةبالإضافة إلى التشغيل السليم، يجب على فريق الاختبار فهم بنية الجهاز. تتكون غرفة اختبار درجة الحرارة والرطوبة من هيكل الغرفة، ونظام تدوير الهواء، ونظام التبريد، ونظام التدفئة، ونظام التحكم في الرطوبة. يتميز نظام تدوير الهواء عادةً باتجاه تدفق هواء قابل للتعديل. قد يستخدم نظام الترطيب أساليب التبخير القائمة على الغلايات أو السطحية. يستخدم نظام التبريد وإزالة الرطوبة دورة تبريد بتكييف الهواء. قد يستخدم نظام التدفئة سخانات زعانف كهربائية أو تسخينًا سلكيًا مباشرًا بمقاومة. تشمل طرق قياس درجة الحرارة والرطوبة اختبار البصيلة الجافة-الرطبة أو أجهزة استشعار الرطوبة المباشرة. قد تحتوي واجهات التحكم والعرض على وحدات تحكم في درجة الحرارة والرطوبة منفصلة أو مدمجة. (2) الأعطال الشائعة وطرق استكشاف الأخطاء وإصلاحها غرف اختبار درجة الحرارة والرطوبة1. مشاكل اختبار درجة الحرارة العالية إذا فشلت درجة الحرارة في الوصول إلى القيمة المحددة، قم بفحص النظام الكهربائي لتحديد الأعطال.إذا ارتفعت درجة الحرارة ببطء شديد، فتحقق من نظام دوران الهواء، وتأكد من ضبط المثبط بشكل صحيح وأن محرك المروحة يعمل.في حالة حدوث تجاوز في درجة الحرارة، قم بإعادة معايرة إعدادات PID.إذا ارتفعت درجة الحرارة بشكل لا يمكن السيطرة عليه، فقد يكون جهاز التحكم معيبًا ويتطلب الاستبدال. 2. مشاكل اختبار درجات الحرارة المنخفضة إذا انخفضت درجة الحرارة ببطء شديد أو ارتفعت بعد الوصول إلى نقطة معينة: تأكد من تجفيف الغرفة مسبقًا قبل الاختبار. تأكد من عدم وجود كميات كبيرة من العينات تعيق تدفق الهواء. إذا تم استبعاد هذه العوامل، فقد يحتاج نظام التبريد إلى صيانة احترافية.غالبًا ما يكون ارتفاع درجة الحرارة نتيجة لظروف محيطة سيئة (على سبيل المثال، عدم وجود مساحة كافية خلف الغرفة أو ارتفاع درجة الحرارة المحيطة). 3. مشاكل اختبار الرطوبة إذا وصلت الرطوبة إلى 100% أو انحرفت بشكل كبير عن الهدف: للحصول على رطوبة ١٠٠٪: تأكد من جفاف الشاش الرطب. افحص مستوى الماء في خزان مستشعر الرطوبة ونظام إمداد المياه التلقائي. استبدل الشاش المتصلب أو نظّفه إذا لزم الأمر. في حالة انخفاض الرطوبة: تأكد من إمداد نظام الترطيب بالماء ومستوى الغلاية. إذا كانت هذه العناصر سليمة، فقد يتطلب نظام التحكم الكهربائي إصلاحًا فنيًا. 4. الأعطال الطارئة أثناء التشغيل في حال تعطل الجهاز، ستعرض لوحة التحكم رمز خطأ مع إنذار صوتي. يمكن للمشغلين مراجعة قسم استكشاف الأخطاء وإصلاحها في الدليل لتحديد المشكلة وترتيب إصلاحات احترافية لاستئناف الاختبار فورًا. قد تُواجه معدات الاختبار البيئي الأخرى مشاكل مختلفة، والتي يجب تحليلها وحلّها كل حالة على حدة. الصيانة الدورية ضرورية، بما في ذلك تنظيف المكثف، وتزييت الأجزاء المتحركة، وفحص أدوات التحكم الكهربائية. هذه الإجراءات ضرورية لضمان عمر المعدات وموثوقيتها.
    إقرأ المزيد

اترك رسالة

اترك رسالة
إذا كنت مهتما بمنتجاتنا وتريد معرفة المزيد من التفاصيل ، فالرجاء ترك رسالة هنا ، وسوف نقوم بالرد عليك في أقرب وقت ممكن.
إرسال

وطن

منتجات

واتس اب

اتصل بنا