Conduction Zone of Heat
Thermal conductivity
It is the thermal conductivity of a substance, passing from high temperature to low temperature within the same substance. Also known as: thermal conductivity, thermal conductivity, thermal conductivity, heat transfer coefficient, heat transfer, thermal conductivity, thermal conductivity, thermal conductivity, thermal conductivity.
Thermal conductivity formula
k = (Q/t) *L/(A*T) k: thermal conductivity, Q: heat, t: time, L: length, A: area, T: temperature difference in SI units, the unit of thermal conductivity is W/(m*K), in imperial units, is Btu · ft/(h · ft2 · °F)
Heat transfer coefficient
In thermodynamics, mechanical engineering and chemical engineering, the heat conductivity is used to calculate the heat conduction, mainly the heat conduction of convection or the phase transformation between fluid and solid, which is defined as the heat through the unit area per unit time under the unit temperature difference, called the heat conduction coefficient of the substance, if the thickness of the mass of L, the measurement value to be multiplied by L, The resulting value is the coefficient of thermal conductivity, usually denoted as k.
Unit conversion of heat conduction coefficient
1 (CAL) = 4.186 (j), 1 (CAL/s) = 4.186 (j/s) = 4.186 (W).
The impact of high temperature on electronic products:
The rise in temperature will cause the resistance value of the resistor to decrease, but also shorten the service life of the capacitor, in addition, the high temperature will cause the transformer, the performance of the related insulation materials to decrease, the temperature is too high will also cause the solder joint alloy structure on the PCB board to change: IMC thickens, solder joints become brittle, tin whisker increases, mechanical strength decreases, junction temperature increases, the current amplification ratio of transistor increases rapidly, resulting in collector current increases, junction temperature further increases, and finally component failure.
Explanation of proper terms:
Junction Temperature: The actual temperature of a semiconductor in an electronic device. In operation, it is usually higher than the Case Temperature of the package, and the temperature difference is equal to the heat flow multiplied by the thermal resistance. Free convection (natural convection) : Radiation (radiation) : Forced Air(gas cooling) : Forced Liquid (gas cooling) : Liquid Evaporation: Surface Surroundings Surroundings
Common simple considerations for thermal design:
1 Simple and reliable cooling methods such as heat conduction, natural convection and radiation should be used to reduce costs and failures.
2 Shorten the heat transfer path as much as possible, and increase the heat exchange area.
3 When installing components, the influence of radiation heat exchange of peripheral components should be fully considered, and the thermal sensitive devices should be kept away from the heat source or find a way to use the protective measures of the heat shield to isolate the components from the heat source.
4 There should be sufficient distance between the air inlet and the exhaust port to avoid hot air reflux.
5 The temperature difference between the incoming air and the outgoing air should be less than 14 ° C.
6 It should be noted that the direction of forced ventilation and natural ventilation should be consistent as far as possible.
7 Devices with large heat should be installed as close as possible to the surface that is easy to dissipate heat (such as the inner surface of the metal casing, metal base and metal bracket, etc.), and there is good contact heat conduction between the surface.
8 Power supply part of the high-power tube and rectifier bridge pile belong to the heating device, it is best to install directly on the housing to increase the heat dissipation area. In the layout of the printed board, more copper layers should be left on the board surface around the larger power transistor to improve the heat dissipation capacity of the bottom plate.
9 When using free convection, avoid using heat sinks that are too dense.
10 The thermal design should be considered to ensure that the current carrying capacity of the wire, the diameter of the selected wire must be suitable for the conduction of the current, without causing more than the allowable temperature rise and pressure drop.
11 If the heat distribution is uniform, the spacing of the components should be uniform to make the wind flow evenly through each heat source.
12 When using forced convection cooling (fans), place the temperature-sensitive components closest to the air intake.
13 The use of free convection cooling equipment to avoid arranging other parts above the high power consumption parts, the correct approach should be uneven horizontal arrangement.
14 If the heat distribution is not uniform, the components should be sparsely arranged in the area with large heat generation, and the component layout in the area with small heat generation should be slightly denser, or add a diversion bar, so that the wind energy can effectively flow to the key heating devices.
15 The structural design principle of the air inlet: on the one hand, try to minimize its resistance to the air flow, on the other hand, consider dust prevention, and comprehensively consider the impact of the two.
16 Power consumption components should be spaced as far apart as possible.
17 Avoid crowding temperature sensitive parts together or arranging them next to high power consuming parts or hot spots.
18 The use of free convection cooling equipment to avoid arranging other parts above the high power consumption parts, the correct practice should be uneven horizontal arrangement.
IEC-60068-2 Combined Test of Condensation and Temperature and Humidity
Difference of IEC60068-2 damp heat test specifications
In the IEC60068-2 specification, there are a total of five kinds of humid heat tests, in addition to the common 85℃/85%R.H., 40℃/93%R.H. In addition to fixed-point high temperature and high humidity, there are two more special tests [IEC60068-2-30, IEC60068-2-38], these two are alternating wet and humid cycle and temperature and humidity combined cycle, so the test process will change temperature and humidity, and even multiple groups of program links and cycles, applied in IC semiconductors, parts, equipment, etc. To simulate the outdoor condensation phenomenon, evaluate the material's ability to prevent water and gas diffusion, and accelerate the product's tolerance to deterioration, the five specifications were organized into a comparison table of the differences in the wet and heat test specifications, and the test points were explained in detail for the wet and heat combined cycle test, and the test conditions and points of GJB in the wet and heat test were supplemented.
IEC60068-2-30 alternating humid heat cycle test
This test uses the test technique of maintaining humidity and temperature alternating to make moisture penetrate into the sample and cause condensation (condensation) on the surface of the product to be tested, so as to confirm the adaptability of the component, equipment or other products in use, transportation and storage under the combination of high humidity and temperature and humidity cyclic changes. This specification is also suitable for large test samples. If the equipment and the test process need to keep the power heating components for this test, the effect will be better than IEC60068-2-38, the high temperature used in this test has two (40 ° C, 55 ° C), the 40 ° C is to meet most of the world's high temperature environment, while 55 ° C meets all the world's high temperature environment, the test conditions are also divided into [cycle 1, cycle 2], In terms of severity, [Cycle 1] is higher than [Cycle 2].
Suitable for side products: components, equipment, various types of products to be tested
Test environment: the combination of high humidity and temperature cyclic changes produces condensation, and three kinds of environments can be tested [use, storage, transportation ([packaging is optional)]
Test stress: Breathing causes water vapor to invade
Whether power is available: Yes
Not suitable for: parts that are too light and too small
Test process and post-test inspection and observation: check the electrical changes after moisture [do not take out the intermediate inspection]
Test conditions: Humidity: 95%R.H.[Temperature change after high humidity maintenance](low temperature 25±3℃←→ high temperature 40℃ or 55℃)
Rising and cooling rate: heating (0.14℃/min), cooling (0.08 ~ 0.16℃/min)
Cycle 1: Where absorption and respiratory effects are important features, the test sample is more complex [humidity not less than 90%R.H.]
Cycle 2: In the case of less obvious absorption and respiratory effects, the test sample is simpler [humidity is not less than 80%R.H.]
IEC60068-2 damp heat test specification difference comparison table
For component type parts products, a combination test method is used to accelerate the confirmation of the test sample's resistance to degradation under high temperature, high humidity and low temperature conditions. This test method is different from the product defects caused by respiration [dew, moisture absorption] of IEC60068-2-30. The severity of this test is higher than that of other humid heat cycle tests, because there are more temperature changes and [respiration] during the test, the cycle temperature range is larger [from 55℃ to 65℃], and the temperature change rate of the temperature cycle is faster [temperature rise: 0.14 ° C /min becomes 0.38 ° C /min, 0.08 ° C /min becomes 1.16 ° C /min], in addition, different from the general humid heat cycle, the low temperature cycle condition of -10 ° C is added to accelerate the breathing rate and make the water condensed in the gap of the substitute freeze, which is the characteristic of this test specification. The test process allows the power test and the applied load power test, but it can not affect the test conditions (temperature and humidity fluctuation, rising and cooling rate) because of the heating of the side product after power. Due to the change of temperature and humidity during the test process, there can not be condensation water droplets on the top of the test chamber to the side product.
Suitable for side products: components, metal components sealing, lead end sealing
Test environment: combination of high temperature, high humidity and low temperature conditions
Test stress: accelerated breathing + frozen water
Whether it can be powered on: it can be powered on and external electric load (it can not affect the conditions of the test chamber because of power heating)
Not applicable: Can not replace moist heat and alternating humid heat, this test is used to produce defects different from respiration
Test process and post-test inspection and observation: check the electrical changes after moisture [check under high humidity conditions and take out after test]
Test conditions: damp heat cycle (25 please - 65 + 2 ℃ / 93 + / - 3% R.H.) please - low temperature cycle (25 please - 65 + 2 ℃ / 93 + 3% R.H. - - 10 + 2 ℃) X5cycle = 10 cycle
Rising and cooling rate: heating (0.38℃/min), cooling (1.16 ℃/min)
Heat and humidity cycle (25←→65±2℃/93±3%R.H.)
Low temperature cycle (25←→65±2℃/93±3%R.H. →-10±2℃)
GJB150-09 damp heat test
Instructions: The wet and heat test of GJB150-09 is to confirm the ability of equipment to withstand the influence of hot and humid atmosphere, suitable for equipment stored and used in hot and humid environments, equipment prone to high humidity, or equipment that may have potential problems related to heat and humidity. Hot and humid locations can occur throughout the year in the tropics, seasonally in mid-latitudes, and in equipment subjected to combined pressure, temperature and humidity changes, with special emphasis on 60 ° C /95%R.H. This high temperature and humidity does not occur in nature, nor does it simulate the dampness and heat effect after solar radiation, but it can find the parts of the equipment with potential problems, but it cannot reproduce the complex temperature and humidity environment, evaluate the long-term effect, and can not reproduce the humidity impact related to the low humidity environment.
Relevant equipment for condensation, wet freezing, wet heat combined cycle test: constant temperature and humidity test chamber
AEC-Q100- Failure Mechanism Based on Integrated Circuit Stress Test Certification
With the progress of automotive electronic technology, there are many complicated data management control systems in today's cars, and through many independent circuits, to transmit the required signals between each module, the system inside the car is like the "master-slave architecture" of the computer network, in the main control unit and each peripheral module, automotive electronic parts are divided into three categories. Including IC, discrete semiconductor, passive components three categories, in order to ensure that these automotive electronic components meet the highest standards of automotive anquan, the American Automotive Electronics Association (AEC, The Automotive Electronics Council is a set of standards [AEC-Q100] designed for active parts [microcontrollers and integrated circuits...] and [[AEC-Q200] designed for passive components, which specifies the product quality and reliability that must be achieved for passive parts. Aec-q100 is the vehicle reliability test standard formulated by the AEC organization, which is an important entry for 3C and IC manufacturers into the international auto factory module, and also an important technology to improve the reliability quality of Taiwan IC. In addition, the international auto factory has passed the anquan standard (ISO-26262). AEC-Q100 is the basic requirement to pass this standard.
List of automotive electronic parts required to pass AECQ-100:
Automotive disposable memory, Power Supply step-down regulator, Automotive photocoupler, three-axis accelerometer sensor, video jiema device, rectifier, ambient light sensor, non-volatile ferroelectric memory, power management IC, embedded flash memory, DC/DC regulator, Vehicle gauge network communication device, LCD driver IC, Single power Supply differential Amplifier, Capacitive proximity switch Off, high brightness LED driver, asynchronous switcher, 600V IC, GPS IC, ADAS Advanced Driver Assistance System Chip, GNSS Receiver, GNSS front-end amplifier... Let's wait.
AEC-Q100 Categories and Tests:
Description: AEC-Q100 specification 7 major categories a total of 41 tests
Group A- ACCELERATED ENVIRONMENT STRESS TESTS consists of 6 tests: PC, THB, HAST, AC, UHST, TH, TC, PTC, HTSL
Group B- ACCELERATED LIFETIME SIMULATION TESTS consists of three tests: HTOL, ELFR, and EDR
PACKAGE ASSEMBLY INTEGRITY TESTS consists of 6 tests: WBS, WBP, SD, PD, SBS, LI
Group D- DIE FABRICATION RELIABILITY Test consists of 5 TESTS: EM, TDDB, HCI, NBTI, SM
The group ELECTRICAL VERIFICATION TESTS consist of 11 tests, including TEST, FG, HBM/MM, CDM, LU, ED, CHAR, GL, EMC, SC and SER
Cluster F-Defect SCREENING TESTS: 11 tests, including: PAT, SBA
The CAVITY PACKAGE INTEGRITY TESTS consist of 8 tests, including: MS, VFV, CA, GFL, DROP, LT, DS, IWV
Short description of test items:
AC: Pressure cooker
CA: constant acceleration
CDM: electrostatic discharge charged device mode
CHAR: indicates the feature description
DROP: The package falls
DS: chip shear test
ED: Electrical distribution
EDR: non-failure-prone storage durability, data retention, working life
ELFR: Early life failure rate
EM: electromigration
EMC: Electromagnetic compatibility
FG: fault level
GFL: Coarse/fine air leakage test
GL: Gate leakage caused by thermoelectric effect
HBM: indicates the human mode of electrostatic discharge
HTSL: High temperature storage life
HTOL: High temperature working life
HCL: hot carrier injection effect
IWV: Internal hygroscopic test
LI: Pin integrity
LT: Cover plate torque test
LU: Latching effect
MM: indicates the mechanical mode of electrostatic discharge
MS: Mechanical shock
NBTI: rich bias temperature instability
PAT: Process average test
PC: Preprocessing
PD: physical size
PTC: power temperature cycle
SBA: Statistical yield analysis
SBS: tin ball shearing
SC: Short circuit feature
SD: weldability
SER: Soft error rate
SM: Stress migration
TC: temperature cycle
TDDB: Time through dielectric breakdown
TEST: Function parameters before and after stress test
TH: damp and heat without bias
THB, HAST: Temperature, humidity or high accelerated stress tests with applied bias
UHST: High acceleration stress test without bias
VFV: random vibration
WBS: welding wire cutting
WBP: welding wire tension
Temperature and humidity test conditions finishing:
THB(temperature and humidity with applied bias, according to JESD22 A101) : 85℃/85%R.H./1000h/bias
HAST(High Accelerated stress test according to JESD22 A110) : 130℃/85%R.H./96h/bias, 110℃/85%R.H./264h/bias
AC pressure cooker, according to JEDS22-A102:121 ℃/100%R.H./96h
UHST High acceleration stress test without bias, according to JEDS22-A118, equipment: HAST-S) : 110℃/85%R.H./264h
TH no bias damp heat, according to JEDS22-A101, equipment: THS) : 85℃/85%R.H./1000h
TC(temperature cycle, according to JEDS22-A104, equipment: TSK, TC) :
Level 0: -50℃←→150℃/2000cycles
Level 1: -50℃←→150℃/1000cycles
Level 2: -50℃←→150℃/500cycles
Level 3: -50℃←→125℃/500cycles
Level 4: -10℃←→105℃/500cycles
PTC(power temperature cycle, according to JEDS22-A105, equipment: TSK) :
Level 0: -40℃←→150℃/1000cycles
Level 1: -65℃←→125℃/1000cycles
Level 2 to 4: -65℃←→105℃/500cycles
HTSL(High temperature storage life, JEDS22-A103, device: OVEN) :
Plastic package parts: Grade 0:150 ℃/2000h
Grade 1:150 ℃/1000h
Grade 2 to 4:125 ℃/1000h or 150℃/5000h
Ceramic package parts: 200℃/72h
HTOL(High temperature working life, JEDS22-A108, equipment: OVEN) :
Grade 0:150 ℃/1000h
Class 1:150℃/408h or 125℃/1000h
Grade 2:125℃/408h or 105℃/1000h
Grade 3:105℃/408h or 85℃/1000h
Class 4:90℃/408h or 70℃/1000h
ELFR(Early Life failure Rate, AEC-Q100-008) : Devices that pass this stress test can be used for other stress tests, general data can be used, and tests before and after ELFR are performed under mild and high temperature conditions.
Temperature Cycling Test
Temperature Cycling, in order to simulate the temperature conditions encountered by different electronic components in the actual use environment, changing the ambient temperature difference range and rapid rise and fall temperature change can provide a more stringent test environment, but it must be noted that additional effects may be caused to material testing. For the relevant international standard test conditions of temperature cycle test, there are two ways to set the temperature change. Macroshow Technology provides an intuitive setting interface, which is convenient for users to set according to the specification. You can choose the total Ramp time or set the rise and cooling rate with the temperature change rate per minute.
List of international specifications for temperature cycling tests:
Total Ramp time (min) : JESD22-A104, MIL-STD-8831, CR200315
Temperature variation per minute (℃/min) : IEC 60749, IPC-9701, Bellcore-GR-468, MIL-2164
Example: Lead-free solder joint reliability test
Instructions: For the reliability test of lead-free solder joints, different test conditions will also be different in terms of the temperature change setting mode. For example, (JEDEC JESD22-A104) will specify the temperature change time with the total time [10min], while other conditions will specify the temperature change rate with [10℃/ min], such as from 100 ℃ to 0℃. With a temperature change of 10 degrees per minute, that is to say, the total temperature change time is 10 minutes.
100℃ [10min]←→0℃[10min], Ramp: 10℃/ min, 6500cycle
-40℃[5min]←→125℃ [5min], Ramp: 10min,
200cycle check once, 2000cycle tensile test [JEDEC JESD22-A104]
-40℃(15min)←→125℃(15min), Ramp: 15min, 2000cycle
Example: LED Automotive lighting (High Power LED)
The temperature cycle test condition of LED car lights is -40 ° C to 100 ° C for 30 minutes, the total temperature change time is 5 minutes, if converted into temperature change rate, it is 28 degrees per minute (28 ° C /min).
Test conditions: -40℃(30min)←→100℃(30min), Ramp: 5min
موثوقية معدات الاختبار البيئي جنبًا إلى جنب مع التحكم في درجة الحرارة متعدد المسارات وتطبيقات الكشفتشتمل معدات الاختبار البيئي على غرفة اختبار درجة الحرارة والرطوبة الثابتة، وغرفة اختبار الصدمات الساخنة والباردة، وغرفة اختبار دورة درجة الحرارة، ولا يوجد فرن رياح... معدات الاختبار هذه كلها في بيئة محاكاة لدرجة الحرارة وتأثير الرطوبة على المنتج، لمعرفة ذلك قد تظهر عملية التصميم والإنتاج والتخزين والنقل والاستخدام عيوبًا في المنتج، وكانت محاكاة درجة حرارة هواء منطقة الاختبار فقط في السابق، ولكن في المعايير الدولية الجديدة وشروط الاختبار الجديدة للمصنع الدولي، بداية المتطلبات بناءً على درجة حرارة الهواء ليس كذلك. إنها درجة حرارة سطح منتج الاختبار. وبالإضافة إلى ذلك، ينبغي أيضًا قياس درجة حرارة السطح وتسجيلها بشكل متزامن أثناء عملية الاختبار لتحليل ما بعد الاختبار. ينبغي دمج معدات الاختبار البيئي ذات الصلة مع التحكم في درجة حرارة السطح ويتم تلخيص تطبيق قياس درجة حرارة السطح على النحو التالي. تطبيق الكشف عن درجة حرارة طاولة اختبار درجة الحرارة والرطوبة الثابتة: الوصف: غرفة اختبار درجة الحرارة والرطوبة الثابتة في عملية الاختبار، جنبًا إلى جنب مع كشف درجة الحرارة متعدد المسارات، ودرجة الحرارة المرتفعة والرطوبة، والتكثيف (التكثيف)، ودرجة الحرارة والرطوبة المدمجة، ودورة درجة الحرارة البطيئة... أثناء عملية الاختبار، يتم تشغيل المستشعر الملصقة على سطح منتج الاختبار، والتي يمكن استخدامها لقياس درجة حرارة السطح أو درجة الحرارة الداخلية لمنتج الاختبار. من خلال وحدة الكشف عن درجة الحرارة متعددة المسارات، يمكن دمج الظروف المحددة ودرجة الحرارة والرطوبة الفعلية ودرجة حرارة سطح منتج الاختبار ونفس القياس والسجل في ملف منحنى متزامن للتخزين والتحليل اللاحق.تطبيقات التحكم في درجة حرارة سطح غرفة اختبار الصدمة الحرارية والكشف عنها: [مدة البقاء بناءً على التحكم في درجة حرارة السطح]، [سجل قياس درجة حرارة سطح عملية الصدمة] الوصف: يتم توصيل مستشعر درجة الحرارة ذو 8 قضبان بسطح منتج الاختبار ويتم تطبيقه على عملية صدمة درجة الحرارة. يمكن حساب وقت المكوث بشكل عكسي وفقًا لوصول درجة حرارة السطح. أثناء عملية التصادم، يمكن دمج ظروف الإعداد ودرجة حرارة الاختبار ودرجة حرارة سطح منتج الاختبار ونفس القياس والسجل في منحنى متزامن.التحكم في درجة حرارة سطح غرفة اختبار دورة درجة الحرارة وتطبيق الكشف عنها: [يتم التحكم في تقلب درجة حرارة دورة درجة الحرارة ووقت السكن وفقًا لدرجة حرارة سطح منتج الاختبار] الوصف: يختلف اختبار دورة درجة الحرارة عن اختبار صدمة درجة الحرارة. يستخدم اختبار صدمة درجة الحرارة الحد الأقصى من طاقة النظام لإجراء تغييرات في درجة الحرارة بين درجات الحرارة العالية والمنخفضة، ومعدل تغير درجة الحرارة يصل إلى 30 ~ 40 درجة مئوية / دقيقة. يتطلب اختبار دورة درجة الحرارة عملية تغيرات في درجات الحرارة العالية والمنخفضة، ويمكن ضبط تقلب درجات الحرارة والتحكم فيها. ومع ذلك، بدأت المواصفات الجديدة وشروط الاختبار الخاصة بالمصنعين الدوليين تتطلب أن يشير تقلب درجة الحرارة إلى درجة حرارة سطح منتج الاختبار، وليس درجة حرارة الهواء، ومواصفات دورة درجة الحرارة الحالية للتحكم في تقلب درجة الحرارة. وفقًا لمواصفات سطح منتج الاختبار هي [JEDEC-22A-104F، IEC60749-25، IPC9701، ISO16750، AEC-Q100، LV124، GMW3172]... بالإضافة إلى ذلك، يمكن أيضًا أن يعتمد وقت البقاء في درجات الحرارة العالية والمنخفضة على سطح الاختبار، بدلا من درجة حرارة الهواء.درجة الحرارة فحص الإجهاد الدوري غرفة الاختبار التحكم في درجة حرارة السطح وتطبيقات الكشف: التعليمات: آلة اختبار فحص الإجهاد لدورة درجة الحرارة، جنبًا إلى جنب مع قياس درجة الحرارة متعدد القضبان، في تقلب درجة الحرارة لفحص الإجهاد، يمكنك اختيار استخدام [درجة حرارة الهواء] أو [اختبار درجة حرارة سطح المنتج] للتحكم في تقلب درجة الحرارة، بالإضافة إلى ذلك، في عملية المقيمين في درجات الحرارة العالية والمنخفضة، يمكن أيضًا التحكم في الوقت المتبادل وفقًا لسطح منتج الاختبار. وفقًا للمواصفات ذات الصلة (GJB1032، IEST) ومتطلبات المنظمات الدولية، وفقًا لتعريف GJB1032 في وقت بقاء فحص الضغط ونقطة قياس درجة الحرارة، 1. يجب ألا يقل عدد المزدوجات الحرارية المثبتة على المنتج عن 3، ويجب ألا تقل نقطة قياس درجة الحرارة لنظام التبريد عن 6، 2. تأكد من ضبط درجة حرارة 2/3 المزدوجات الحرارية على المنتج عند ±10 درجة مئوية، بالإضافة إلى ذلك، وفقًا لمتطلبات IEST (الدولية) رابطة العلوم والتكنولوجيا البيئية)، يجب أن يصل وقت الإقامة إلى وقت تثبيت درجة الحرارة بالإضافة إلى 5 دقائق أو وقت اختبار الأداء. لا يوجد فرن هواء (غرفة اختبار الحمل الحراري الطبيعي) تطبيق الكشف عن درجة حرارة السطح: الوصف: من خلال الجمع بين الفرن عديم الرياح (غرفة اختبار الحمل الحراري الطبيعي) ووحدة الكشف عن درجة الحرارة متعددة المسارات، يتم إنشاء بيئة درجة الحرارة بدون مروحة (الحمل الحراري الطبيعي)، ويتم دمج اختبار الكشف عن درجة الحرارة ذي الصلة. يمكن تطبيق هذا الحل على اختبار درجة الحرارة المحيطة الفعلي للمنتجات الإلكترونية (مثل: الخادم السحابي، 5G، داخل السيارة الكهربائية، في الأماكن المغلقة بدون بيئة تكييف الهواء، العاكس الشمسي، تلفزيون LCD كبير، مشاركة الإنترنت المنزلي، مكتب 3C، الكمبيوتر المحمول، سطح المكتب ، وحدة تحكم في الألعاب ....... إلخ).
مقارنة بين غرفة اختبار الحمل الحراري وغرفة اختبار درجة الحرارة والرطوبة الثابتة وفرن درجة الحرارة العاليةتعليمات:تعد المعدات السمعية والبصرية للترفيه المنزلي وإلكترونيات السيارات أحد المنتجات الرئيسية للعديد من الشركات المصنعة، ويجب أن يحاكي المنتج في عملية التطوير قدرة المنتج على التكيف مع درجة الحرارة والخصائص الإلكترونية في درجات حرارة مختلفة. ومع ذلك، عند استخدام فرن عام أو غرفة حرارية ورطوبة لمحاكاة بيئة درجة الحرارة، إما أن الفرن أو غرفة الحرارة والرطوبة تحتوي على منطقة اختبار مجهزة بمروحة دوارة، لذلك ستكون هناك مشاكل في سرعة الرياح في منطقة الاختبار.أثناء الاختبار، يتم موازنة توحيد درجة الحرارة عن طريق تدوير المروحة الدائرية. على الرغم من أنه يمكن تحقيق توحيد درجة الحرارة في منطقة الاختبار من خلال دوران الرياح، إلا أن حرارة المنتج المراد اختباره سيتم أيضًا التخلص منها عن طريق الهواء المتداول، والذي سيكون غير متسق بشكل كبير مع المنتج الفعلي في بيئة الاستخدام الخالية من الرياح (مثل غرفة المعيشة، في الأماكن المغلقة).بسبب العلاقة بين دوران الرياح، سيكون الفرق في درجة حرارة المنتج المراد اختباره حوالي 10 درجات مئوية. من أجل محاكاة الاستخدام الفعلي للظروف البيئية، سوف يخطئ الكثير من الناس في فهم أن غرفة الاختبار فقط هي التي يمكنها إنتاج درجة الحرارة (مثل: الفرن، وغرفة الرطوبة ذات درجة الحرارة الثابتة) التي يمكنها إجراء اختبار الحمل الحراري الطبيعي. في الواقع، هذا ليس هو الحال. في المواصفات، هناك متطلبات خاصة لسرعة الرياح، ويلزم وجود بيئة اختبار بدون سرعة الرياح. من خلال معدات وبرمجيات اختبار الحمل الحراري الطبيعي، يتم إنشاء بيئة درجة الحرارة دون المرور عبر المروحة (الحمل الحراري الطبيعي)، ويتم إجراء اختبار تكامل الاختبار للكشف عن درجة حرارة المنتج قيد الاختبار. يمكن استخدام هذا الحل للإلكترونيات المتعلقة بالمنزل أو اختبار درجة الحرارة المحيطة في العالم الحقيقي في الأماكن الضيقة (على سبيل المثال، تلفزيون LCD كبير، وقمرة قيادة السيارة، وإلكترونيات السيارات، وأجهزة الكمبيوتر المحمولة، وأجهزة الكمبيوتر المكتبية، ووحدات تحكم الألعاب، وأجهزة الاستريو، وما إلى ذلك).مواصفات اختبار دوران الهواء غير القسري: IEC-68-2-2، GB2423.2، GB2423.2-89 3.31 الفرق بين بيئة الاختبار مع أو بدون دوران الرياح واختبار المنتجات المراد اختبارها:تعليمات:إذا لم يتم تنشيط المنتج المراد اختباره، فلن يقوم المنتج المراد اختباره بتسخين نفسه، ويمتص مصدر الحرارة الخاص به فقط حرارة الهواء في فرن الاختبار، وإذا تم تنشيط المنتج المراد اختباره وتسخينه، فإن دوران الرياح في الفرن سوف يقوم فرن الاختبار بإزالة حرارة المنتج المراد اختباره. وكل زيادة بمقدار متر واحد في سرعة الرياح، ستنخفض حرارتها بحوالي 10%. لنفترض محاكاة خصائص درجة حرارة المنتجات الإلكترونية في بيئة داخلية دون تكييف الهواء. إذا تم استخدام فرن أو جهاز ترطيب بدرجة حرارة ثابتة لمحاكاة 35 درجة مئوية، على الرغم من أنه يمكن التحكم في البيئة في حدود 35 درجة مئوية من خلال التسخين الكهربائي والضاغط، فإن دوران الرياح في الفرن وغرفة الاختبار الحراري والترطيب سوف يزيل الحرارة للمنتج المراد اختباره. بحيث تكون درجة الحرارة الفعلية للمنتج المراد اختباره أقل من درجة الحرارة في حالة عدم وجود ريح حقيقية. من الضروري استخدام غرفة اختبار الحمل الحراري الطبيعي بدون سرعة الرياح لمحاكاة البيئة الفعلية الخالية من الرياح بشكل فعال (داخلي، بدون قمرة قيادة السيارة، هيكل الآلة، غرفة خارجية مقاومة للماء... مثل هذه البيئة).جدول مقارنة سرعة الرياح ومنتج IC المراد اختباره:الوصف: عندما تكون سرعة الرياح المحيطة أسرع، فإن درجة حرارة سطح IC ستزيل أيضًا حرارة سطح IC بسبب دورة الرياح، مما يؤدي إلى زيادة سرعة الرياح وانخفاض درجة الحرارة.
مقارنة الاختبار المناخي والاختبار البيئياختبار البيئة المناخية - غرفة اختبار درجة الحرارة والرطوبة الثابتة، غرفة اختبار درجة الحرارة العالية والمنخفضة، غرفة اختبار الصدمات الباردة والساخنة، غرفة اختبار التناوب الرطب والحراري، غرفة اختبار التغير السريع في درجة الحرارة، غرفة اختبار تغير درجة الحرارة الخطية، درجة حرارة ثابتة ثابتة وغرفة اختبار الرطوبة، وما إلى ذلك. وكلها تتضمن التحكم في درجة الحرارة.نظرًا لوجود العديد من نقاط التحكم في درجة الحرارة للاختيار من بينها، فإن طريقة التحكم في درجة حرارة غرفة المناخ لديها أيضًا ثلاثة حلول: التحكم في درجة حرارة المدخل، والتحكم في درجة حرارة المنتج، والتحكم في درجة الحرارة "المتتالية". الأولان هما التحكم في درجة الحرارة بنقطة واحدة، والثالث هو التحكم في درجة الحرارة بمعلمتين.لقد كانت طريقة التحكم في درجة الحرارة ذات النقطة الواحدة ناضجة جدًا ومستخدمة على نطاق واسع.كانت معظم طرق التحكم المبكرة هي التحكم بمفتاح "بينج بونج"، والمعروف باسم التسخين عندما يكون الجو باردًا والتبريد عندما يكون الجو حارًا. وضع التحكم هذا هو وضع التحكم في ردود الفعل. عندما تكون درجة حرارة تدفق الهواء المتداول أعلى من درجة الحرارة المحددة، يتم فتح صمام التبريد الكهرومغناطيسي لتوصيل حجم بارد إلى تدفق الهواء المتداول وتقليل درجة حرارة تدفق الهواء. بخلاف ذلك، يتم تشغيل مفتاح الدائرة الكهربائية لجهاز التسخين لتسخين تدفق الهواء المتداول مباشرة. رفع درجة حرارة تيار الهواء. يتطلب وضع التحكم هذا أن يكون جهاز التبريد ومكونات التسخين في غرفة الاختبار دائمًا في حالة عمل احتياطية، الأمر الذي لا يهدر الكثير من الطاقة فحسب، بل يكون أيضًا المعلمة الخاضعة للتحكم (درجة الحرارة) دائمًا في حالة "التذبذب"، و دقة التحكم ليست عالية.الآن يتم تغيير طريقة التحكم في درجة الحرارة أحادية النقطة في الغالب إلى طريقة التحكم المتكاملة التفاضلية النسبية العالمية (PID)، والتي يمكن أن تعطي تصحيح درجة الحرارة المتحكم فيه وفقًا للتغيير السابق للمعلمة الخاضعة للتحكم (التحكم المتكامل) واتجاه التغيير (التحكم التفاضلي ) ، والذي لا يوفر الطاقة فحسب، بل أيضًا أن سعة "التذبذب" صغيرة ودقة التحكم عالية.التحكم في درجة الحرارة ثنائي المعلمة هو جمع قيمة درجة حرارة مدخل الهواء لغرفة الاختبار وقيمة درجة الحرارة بالقرب من المنتج في نفس الوقت. مدخل الهواء لغرفة الاختبار قريب جدًا من موضع تركيب المبخر والسخان في غرفة تعديل الهواء، ويعكس حجمه بشكل مباشر نتيجة تعديل الهواء. إن استخدام قيمة درجة الحرارة هذه كمعلمة للتحكم في التغذية المرتدة له ميزة التعديل السريع لمعلمات حالة الهواء المتداول.تشير قيمة درجة الحرارة القريبة من المنتج إلى ظروف درجة الحرارة البيئية الحقيقية التي يعاني منها المنتج، وهو ما تتطلبه مواصفات الاختبار البيئي. إن استخدام قيمة درجة الحرارة هذه كمعلمة للتحكم في التغذية المرتدة يمكن أن يضمن فعالية ومصداقية اختبار درجة الحرارة البيئي، لذلك يأخذ هذا النهج في الاعتبار مزايا كليهما ومتطلبات الاختبار الفعلي. يمكن لاستراتيجية التحكم في درجة الحرارة ذات المعلمة المزدوجة أن تكون "التحكم في مشاركة الوقت" المستقل لمجموعتي بيانات درجة الحرارة، أو يمكن دمج قيمتي درجة الحرارة الموزونة في قيمة درجة حرارة واحدة كإشارة تحكم في التغذية المرتدة وفقًا لمعامل ترجيح معين، وترتبط قيمة معامل الوزن بحجم غرفة الاختبار، وسرعة الرياح لتدفق الهواء المتداول، وحجم معدل تغير درجة الحرارة، والإخراج الحراري لعمل المنتج والمعلمات الأخرى.نظرًا لأن نقل الحرارة هو عملية فيزيائية ديناميكية معقدة، ويتأثر بشكل كبير بظروف البيئة الجوية المحيطة بغرفة الاختبار، وحالة عمل العينة المختبرة نفسها، وتعقيد البنية، فمن الصعب إنشاء نموذج رياضي مثالي لـ التحكم في درجة الحرارة والرطوبة في غرفة الاختبار. من أجل تحسين استقرار ودقة التحكم، تم إدخال نظرية وطريقة التحكم المنطقي المضبب في التحكم في بعض غرف اختبار درجة الحرارة. في عملية التحكم، تتم محاكاة طريقة تفكير الإنسان، ويتم اعتماد التحكم التنبئي للتحكم في درجة الحرارة والرطوبة في مجال الفضاء بسرعة أكبر.بالمقارنة مع درجة الحرارة، فإن اختيار نقاط قياس الرطوبة والتحكم فيها بسيط نسبيًا. أثناء تدفق دوران الهواء الرطب المنظم جيدًا إلى غرفة اختبار دورة درجة الحرارة العالية والمنخفضة، يكون تبادل جزيئات الماء بين الهواء الرطب وقطعة الاختبار والجدران الأربعة لغرفة الاختبار صغيرًا جدًا. طالما أن درجة حرارة الهواء المتداول مستقرة، فإن تدفق الهواء المتداول من دخول غرفة الاختبار إلى الخروج من غرفة الاختبار قيد التنفيذ. يتغير محتوى الرطوبة في الهواء الرطب قليلاً جدًا. ولذلك، فإن قيمة الرطوبة النسبية للهواء المكتشف في أي نقطة من مجال تدفق الهواء المتداول في صندوق الاختبار، مثل المدخل أو التيار الأوسط لحقل التدفق أو مخرج الهواء العائد، هي نفسها بشكل أساسي. ولهذا السبب، في العديد من غرف الاختبار التي تستخدم طريقة اللمبة الرطبة والجافة لقياس الرطوبة، يتم تثبيت مستشعر اللمبة الرطبة والجافة عند مخرج الهواء الراجع لغرفة الاختبار. علاوة على ذلك، من خلال التصميم الهيكلي لصندوق الاختبار وسهولة الصيانة أثناء الاستخدام، يتم وضع مستشعر اللمبة الرطبة والجافة المستخدم لقياس الرطوبة النسبية والتحكم فيها عند مدخل الهواء الراجع لسهولة التركيب، ويساعد أيضًا على استبدال الرطب بانتظام لمبة الشاش وتنظيف رأس استشعار درجة الحرارة للمقاومة PT100، ووفقا لمتطلبات اختبار الحرارة الرطبة GJB150.9A 6.1.3. يجب ألا تقل سرعة الرياح التي تمر عبر مستشعر اللمبة الرطبة عن 4.6 م/ث. يتم تركيب مستشعر اللمبة الرطبة المزود بمروحة صغيرة عند مخرج الهواء الراجع لتسهيل الصيانة والاستخدام.
يعد Bellcore GR78-CORE أحد المواصفات المستخدمة في قياس مقاومة عزل الأسطح المبكر (مثل IPC-650). تم تنظيم الاحتياطات ذات الصلة في هذا الاختبار كمرجع للموظفين الذين يحتاجون إلى تنفيذ هذا الاختبار، ويمكننا أيضًا الحصول على فهم أولي لهذه المواصفات.الغرض من الاختبار:اختبار مقاومة العزل السطحي1. غرفة اختبار درجة الحرارة والرطوبة الثابتة: الحد الأدنى لظروف الاختبار هو 35 درجة مئوية ± 2 درجة مئوية / 85٪ رطوبة نسبية، 85 ± 2 درجة مئوية / 85٪ رطوبة نسبية.2. نظام قياس الهجرة الأيونية: من خلال السماح بقياس مقاومة العزل لدائرة الاختبار في ظل هذه الظروف، سيكون مصدر الطاقة قادرًا على توفير 10 Vdc / 100μA. إجراء الاختبار:أ. يتم اختبار كائن الاختبار بعد 24 ساعة عند 23 درجة مئوية (73.4 درجة فهرنهايت)/50% رطوبة نسبية. بيئةب. ضع نماذج اختبار محدودة على حامل مناسب واحتفظ بمسافة لا تقل عن 0.5 بوصة بين دوائر الاختبار، دون عرقلة تدفق الهواء، وثبت الرف في الفرن حتى نهاية التجربة.ج. ضع الرف في وسط غرفة اختبار درجة الحرارة والرطوبة الثابتة، وقم بمحاذاة لوحة الاختبار وموازتها مع تدفق الهواء في الغرفة، ثم قم بتوجيه الخط إلى خارج الغرفة، بحيث تكون الأسلاك بعيدة عن دائرة الاختبار .د. أغلق باب الفرن واضبط الحالة على 35 ±2 درجة مئوية، على الأقل 85% رطوبة نسبية. والسماح للفرن بقضاء عدة ساعات في الاستقراره. بعد 4 أيام، سيتم قياس مقاومة العزل وتسجيل القيمة المقاسة بشكل دوري بين 1 و2،2 و3،3 و4 و4 و5 باستخدام جهد مطبق يبلغ 45 ~ 100 فولت تيار مستمر. في ظل ظروف الاختبار، يتم إرسال الاختبار من الجهد المقاس إلى الدائرة بعد دقيقة واحدة. 2 و 4 بشكل دوري في إمكانات مماثلة. و5 بشكل دوري في الإمكانات المعاكسة.و. ينطبق هذا الشرط فقط على المواد الشفافة أو شبه الشفافة، مثل أقنعة اللحام والطلاءات المطابقة.ز. أما بالنسبة للوحات الدوائر المطبوعة متعددة الطبقات المطلوبة لاختبار مقاومة العزل، فسيتم استخدام الإجراء العادي الوحيد لمنتجات دوائر اختبار مقاومة العزل. لا يُسمح بإجراءات التنظيف الإضافية. غرفة الاختبار ذات الصلة: غرفة درجة الحرارة والرطوبةطريقة تحديد المطابقة:1. بعد الانتهاء من اختبار هجرة الإلكترون، تتم إزالة عينة الاختبار من فرن الاختبار، وإضاءتها من الخلف واختبارها بتكبير 10 ×، ولن يتم العثور على تقليل ظاهرة هجرة الإلكترون (النمو الخيطي) بأكثر من 20 ٪ بين الموصلات.2. لن يتم استخدام المواد اللاصقة كأساس لإعادة النشر عند تحديد الامتثال لطريقة اختبار 2.6.11 الخاصة بـ IPC-TM-650[8] لفحص المظهر والسطح بندًا تلو الآخر.مقاومة العزل لا تلبي متطلبات الأسباب:1. تقوم الملوثات بلحام الخلايا مثل الأسلاك على السطح العازل للركيزة، أو يتم إسقاطها بواسطة ماء فرن الاختبار (الغرفة)2. الدوائر المحفورة بشكل غير كامل سوف تقلل مسافة العزل بين الموصلات بأكثر من متطلبات التصميم المسموح بها3. تهيج أو كسر أو إتلاف العزل بين الموصلات بشكل كبير