شعار
وطن

غرفة اختبار درجات الحرارة العالية والمنخفضة

غرفة اختبار درجات الحرارة العالية والمنخفضة

  • Key Differences in Using Environmental Test Chambers Between Summer and Winter
    Nov 26, 2025
    The core difference lies in the impact of ambient temperature and humidity variations on equipment operating efficiency, energy consumption, and test accuracy. Targeted measures for temperature/humidity control, heat dissipation/anti-freezing, and maintenance are required. Specific differences and precautions are as follows: I. Core Difference Comparison Table Dimension Summer Operation Characteristics Winter Operation Characteristics Ambient Conditions High temperature & high humidity (room temp: 30-40℃, RH: 60%-90%) Low temperature & low humidity (room temp: 0-15℃, RH: 30%-60%) Equipment Load High refrigeration system load, prone to overload High heating system load; humidification compensation required for certain models (e.g., temperature-humidity chambers) Impact on Test Accuracy High humidity causes condensation, affecting sensor accuracy Low temperature leads to pipeline freezing; low humidity may reduce stability of humidity tests Energy Consumption High refrigeration energy consumption High heating/humidification energy consumption   II. Season-Specific Precautions (1) Summer Operation: Focus on High Temperature/High Humidity/Overload Prevention 1. Ambient Heat Dissipation Management Reserve ≥50cm ventilation space around the chamber; avoid direct sunlight or proximity to heat sources (e.g., workshop ovens, air conditioner outlets). Ensure laboratory air conditioning operates normally, maintaining room temperature at 25-30℃. If room temp exceeds 35℃, install industrial fans or cooling devices to assist heat dissipation and prevent refrigeration system overload protection triggered by high ambient temperatures. 2. Moisture & Condensation Control Regularly clean chamber door gaskets with a dry cloth to prevent sealant aging and air leakage caused by high humidity. After humidity tests, open the chamber door promptly for ventilation and wipe off condensation to avoid moisture damage to sensors (e.g., humidity sensors). 3. Equipment Operation Protection Avoid prolonged continuous operation of extreme low-temperature tests (e.g., below -40℃). Recommend shutting down for 1 hour after 8 hours of operation to protect the compressor. Periodically inspect refrigeration system radiators (condensers) and remove dust/debris (blow with compressed air monthly) to ensure heat dissipation efficiency. (2) Winter Operation: Focus on Anti-Freezing/Low Humidity/Startup Failure Prevention 1. Ambient Temperature Guarantee Maintain laboratory temperature above 5℃ (strictly follow 10℃ if specified as the minimum operating temperature) to prevent pipeline freezing (e.g., refrigeration capillaries, humidification pipes). For unheated laboratories, install an insulation cover (with ventilation holes reserved) or activate the "preheating mode" (if supported) before testing. 2. Humidification System Maintenance Use distilled water in the humidification tank to avoid pipe blockage from impurity crystallization at low temperatures. Drain water from the humidification tank and pipelines during long-term non-use to prevent freezing-induced component damage. 3. Startup & Operation Specifications In low-temperature environments, activate "standby mode" for 30 minutes preheating before setting test parameters to avoid compressor burnout from excessive startup load. If startup fails (e.g., compressor inactivity), check power voltage (prone to instability during winter peak hours) or contact after-sales to inspect pipeline freezing. 4. Low Humidity Compensation For low-humidity tests (e.g., ≤30% RH), winter dryness may cause rapid humidity. Adjust humidification frequency appropriately and use the "humidity calibration" function to reduce fluctuations. III. General Precautions (All Seasons) Calibrate temperature/humidity sensors quarterly to ensure data accuracy. Clean air filters monthly to maintain airflow circulation. Arrange test samples evenly to avoid blocking internal air ducts and ensure temperature/humidity uniformity. For long-term non-use: Run the chamber for 1 hour monthly in summer (moisture prevention) and drain pipeline water in winter (freezing prevention). By addressing seasonal environmental variations, equipment service life can be extended, and test failures caused by temperature/humidity fluctuations avoided—aligning with the high precision and stability requirements of the industrial test equipment industry.    
    إقرأ المزيد
  • Differences Between High-Low Temperature Test Chamber and Thermal Shock Chamber
    Nov 26, 2025
    In industrial product reliability testing, high and low temperature test chambers and temperature shock test chambers are core environmental testing equipment, both simulating extreme temperatures to verify product durability. However, they differ fundamentally: the former focuses on gradual temperature-humidity cycles, while the latter on instantaneous thermal shock. Clarifying these differences is key to matching test needs and ensuring data validity. 1. Rate High-Low Temperature Test Chamber: Slow, with a regular rate of 0.7∼1 ℃/min, and rapid versions can reach 5∼15 ℃/min. Thermal Shock Chamber: Abrupt, with instant switching. 2. Structure High-Low Temperature Test Chamber: Single-chamber structure, integrating heating, refrigeration, and humidification functions. Thermal Shock Chamber: Multi-chamber structure, including high-temperature chamber, low-temperature chamber, and test chamber. 3. Temperature Continuity High-Low Temperature Test Chamber: The temperature changes smoothly without any "shock sensation". Thermal Shock Chamber: The temperature changes by leaps and bounds, with a common temperature range of −40∼150℃. 4. Application High-Low Temperature Test Chamber: Suitable for temperature endurance testing of general products such as electronic devices, household appliances, and building materials. Thermal Shock Chamber: Suitable for shock resistance testing of temperature-sensitive products such as automotive electronics, semiconductors, and aerospace components. 5. Core Position & Test Purpose High-Low Temperature Test Chamber: Simulates gradual temperature (and humidity) changes to test product stability under slow thermal variation (e.g., electronic devices’ performance after gradual cooling to -40℃ or heating to 85℃). Thermal Shock Chamber: Simulates abrupt temperature switching (≤30s transition) to test product resistance to extreme thermal shock (e.g., auto parts adapting to drastic day-night temperature changes, aerospace components’ tolerance to sudden high-low temperature shifts). Summary The high and low temperature test chamber is a "slow-paced endurance test", while the temperature shock chamber is a "fast-paced explosive power challenge". Just based on whether the product will encounter "sudden cold and heat" in the actual usage scenario, the precise selection can be made.
    إقرأ المزيد
  • What should we pay attention to when using a thermal shock test chamber (water-cooled)?
    Nov 22, 2025
    I. Before Operation Use deionized water or distilled water as cooling water (to prevent scale formation); control temperature at 15-30℃, pressure at 0.15-0.3MPa, flow rate ≥5L/min. Clean the Y-type filter element in advance to ensure unobstructed water flow. Inspect water supply/drainage pipelines for secure connections, no leakage or kinking; keep drainage ports unobstructed with a height difference ≥10cm. Ensure the environment is ventilated and dry, grounding resistance ≤4Ω, and power supply (AC380V±10%) stable. Keep the inner chamber and shelves clean. Sample volume ≤1/3 of effective capacity, with weight evenly distributed on shelves. Seal moisture-sensitive parts of non-hermetic samples to avoid condensation affecting test accuracy. II. During Operation Real-time monitor cooling water pressure, flow rate and temperature. Immediately shut down for troubleshooting (pipeline blockage, leakage or chiller failure) if pressure drops sharply, flow is insufficient or temperature exceeds 35℃. Set high/low temperature parameters per GB/T, IEC and other standards (not exceeding rated range); control heating/cooling rate ≤5℃/min. Prohibit instantaneous switching between extreme temperatures. Do not open the door arbitrarily during operation (to prevent scalding/frostbite from hot/cold air). Use protective gloves for emergency sample handling. Shut down immediately for maintenance upon alarm (overtemperature, water shortage, etc.); prohibit forced operation. III. After Test Turn off power and cooling water inlet/outlet valves; drain residual water in pipelines. Clean the water tank and replace water monthly; add special water stabilizer to extend pipeline service life. Wipe the inner chamber and shelves after temperature returns to room temperature. Clean the air filter (1-2 times monthly); inspect pipeline seals and replace aging/leaking ones promptly. For long-term non-use: Power on and run for 30 minutes monthly (including water cooling system circulation), inject anti-rust protection fluid into pipelines, and cover the equipment with a dust cover in a dry, ventilated place. IV. Prohibitions Prohibit using unqualified water (tap water, well water, etc.) or blocking filters/drainage ports (to avoid affecting heat dissipation). Prohibit overloading samples or unauthorized disassembly/modification of water cooling pipelines/core components. Repairs must be performed by professionals. Prohibit frequent start-stop (wait ≥5 minutes after shutdown before restarting). Prohibit placing flammable, explosive or corrosive substances.
    إقرأ المزيد
  • Differences between High and Low Temperature Test Chamber and Constant Temperature Test Chamber
    Nov 13, 2025
        In environmental reliability testing, high-low temperature humidity test chambers and constant temperature and humidity test chambers are easily confused due to similar names, but they differ significantly in testing capabilities, applications and technical characteristics. Accurate distinction and selection are key to ensuring valid test data. This blog will analyze the core differences and provide selection suggestions. I. Core Definition: Essential Distinction of Functional Boundaries     The core difference between the two starts with functional positioning, which directly determines the applicable scenarios.     The core of the constant temperature and humidity test chamber is "maintaining stability". It can accurately control and maintain the set temperature and humidity for a long time, and is used to simulate the long-term performance of products in specific environments, such as electronic component stability testing and textile temperature-humidity sensitivity testing. Its core requirement is "steady-state environmental performance verification".     The high-low temperature humidity test chamber focuses on "dynamic simulation". In addition to precise temperature and humidity control, it has a wide-range fluctuation capability, which can simulate environments such as high-low temperature cycles and alternating humidity and heat, such as extreme temperature differences during product transportation and diurnal temperature-humidity changes of outdoor equipment. Its core requirement is "dynamic environmental reliability verification". II. Key Differences: Multi-dimensional Analysis from Technology to Application 1. Temperature and Humidity Range and Fluctuation Capacity     The constant temperature and humidity chamber has a mild temperature and humidity range (temperature 0℃-100℃, humidity 30%-95%RH) and high control precision (temperature fluctuation ±0.5℃, humidity ±2%RH), but no extreme temperature-humidity impact capability.     The high-low temperature humidity chamber has a wider temperature and humidity coverage (temperature -70℃~200℃, humidity 10%-98%RH) and rapid change capability (heating rate 3℃/min-15℃/min, cooling rate 1℃/min-10℃/min), which can realize rapid cycle switching between "high temperature and high humidity - low temperature and low humidity"—a feature unavailable in the former. 2. Differences in Core Technical Architecture     The constant temperature and humidity chamber adopts single-stage compression refrigeration, conventional resistance heating, and steam or ultrasonic humidification. Its system design focuses on "energy saving and stability", with simple structure and low operating cost.     To meet extreme needs, the high-low temperature humidity chamber uses cascade refrigeration, rapid-heating tubes, and its humidity system includes a fast-response dehumidification module, with a thicker insulation layer on the chamber wall. Its technical complexity and manufacturing cost are much higher than the former. 3. Applicable Scenarios and Testing Purposes     The constant temperature and humidity chamber is used for steady-state environmental adaptability testing, such as electronic component aging and pharmaceutical storage simulation, to verify the performance consistency and durability of products in a fixed environment.     The high-low temperature humidity chamber focuses on dynamic reliability testing, such as high-low temperature cycling of auto parts and extreme environment simulation of aerospace products, to expose product defects (material aging, structural deformation, etc.) under drastic environmental changes.     In summary, the constant temperature and humidity chamber guards the steady-state environment, while the high-low temperature humidity chamber challenges the dynamic environment. There is no absolute advantage or disadvantage between the two. Only by matching needs, clarifying scenarios and budgets can the test truly guarantee product quality.
    إقرأ المزيد
  • Lab Two-Chamber Thermal Shock Chamber
    Nov 03, 2025
    The two-chamber thermal shock chamber is a highly reliable environmental testing device specifically designed for evaluating the ability of products to withstand extreme temperature changes. It simulates harsh temperature shock conditions to rapidly expose the possible failures of materials, electronic components, automotive parts and aerospace equipment during rapid thermal expansion and contraction, such as cracking, performance degradation and connection faults. It is a key tool for improving product quality and reliability. The core design concept of this device lies in efficiency and harshness. It has two independently controlled test chambers inside: a high-temperature chamber and a low-temperature chamber, which are respectively maintained at the set extreme temperatures continuously. The sample to be tested is placed in an automatic mechanical basket. During the test, the basket will be rapidly switched between the high-temperature zone and the low-temperature zone under the program control, instantly exposing the sample to a huge temperature difference environment, thus achieving the true "thermal shock" effect. Compared with another mainstream three-chamber (static) impact chamber, the significant advantage of the two-chamber type lies in its extremely fast temperature conversion speed and short temperature recovery time, ensuring the strictness and consistency of the test conditions. It is highly suitable for testing samples with sturdy structures that can withstand mechanical movement, and the testing efficiency is extremely high. Its working principle determines that during the testing process, the temperature fluctuation of the high and low temperature chamber is small, it can quickly return to the set point, and is not significantly affected by the sample load. This equipment is widely used in fields such as semiconductors, integrated circuits, national defense science and technology, automotive electronics, and new material research and development, for conducting reliability tests as required by various international standards. Its main technical parameters include a wide temperature range (high temperatures up to +150°C to +200°C, low temperatures down to -40°C to -65°C or even lower), precise temperature control accuracy, and customizable sample area sizes. The Lab two-chamber thermal shock chamber, with its irreplaceable rapid temperature change capability, has become the ultimate touchstone for testing the adaptability and durability of products in extreme temperature environments, providing a strong guarantee for the precision manufacturing and reliability verification of modern industry.
    إقرأ المزيد
  • Dragon Heat Flow Meter Temperature Control Test
    Oct 29, 2025
    Temperature control tests are usually conducted under two conditions: no-load (without sample placement) and load (with standard samples or actual samples being tested placed). The basic testing steps are as follows:   1. Preparatory work: Ensure that the heat flow meter has been fully preheated and is in a stable state. Prepare high-precision temperature sensors that have undergone metrological calibration (such as multiple platinum resistance PT100), and their accuracy should be much higher than the claimed indicators of the heat flow meter to be measured. 2. Temperature uniformity test: Multiple calibrated temperature sensors are arranged at different positions within the working area of the heat flow meter's heating plate (such as the center, four corners, edges, etc.). Set one or more typical test temperature points (such as -20°C, 25°C, 80°C). After the system reaches thermal stability, simultaneously record the temperature values of all sensors. Calculate the maximum, minimum and standard deviation of these readings to evaluate the uniformity. 3. Temperature control stability and accuracy test: Fix a calibrated temperature sensor at the center of the heating plate (or closely attach it to the built-in sensor of the instrument). Set the target temperature and start the temperature control. Record the entire process from the start to reaching the target temperature (for analyzing response speed and overshoot). After reaching the target temperature, continuously record for at least 1-2 hours (or as per standard requirements), with a sampling frequency high enough (such as once per second), and analyze the recorded data. 4. Load test: Place standard reference materials with known thermal physical properties or typical samples to be tested between the hot plates. Repeat step 3 and observe the changes in temperature control performance under load conditions. Load will directly affect the thermal inertia of the system, thereby influencing the response speed and stability.   When you are choosing or using a heat flow meter, be sure to carefully review the specific parameters regarding temperature control performance in its technical specification sheet and understand under what conditions (no-load/load) these parameters were measured. Lab will provide clear and verifiable temperature control test data and reports.
    إقرأ المزيد
  • How is over-temperature protection carried out in a temperature test chamber?
    Oct 23, 2025
    The over-temperature protection of the temperature test chamber is a multi-level and multi-redundant safety system. Its core purpose is to prevent the temperature inside the chamber from rising out of control due to equipment failure, thereby protecting the safety of the test samples, the test chamber itself and the laboratory environment.   The protection system usually consists of the following key parts working together: 1. Sensor: The main sensor is used for the normal temperature control of the test chamber and provides feedback signals to the main controller. An independent over-temperature protection sensor is the key to a safety system. It is a temperature-sensing element independent of the main control temperature system (usually a platinum resistance or thermocouple), which is placed by strategically at the position within the box that best represents the risk of overheating (such as near the heater outlet or on the top of the working chamber). Its sole task is to monitor over-temperature. 2. Processing unit: The main controller receives signals from the main sensor and executes the set temperature program. The independent over-temperature protector, as an independent hardware device, is specifically designed to receive and process the signals from the over-temperature protection sensor. It does not rely on the main controller. Even if the main controller crashes or experiences a serious malfunction, it can still operate normally. 3. Actuator: The main controller controls the on and off of the heater and the cooler. The safety relay/solid-state relay receives the signal sent by the over-temperature protector and directly cuts off the power supply circuit of the heater. This is the final execution action.   The over-temperature protection of the temperature test chamber is a multi-level, hard-wire connected safety system designed based on the concepts of "redundancy" and "independence". It does not rely on the main control system. Through independent sensors and controllers, when a dangerous temperature is detected, it directly and forcibly cuts off the heating energy and notifies the user through sound and light alarms, thus forming a complete and reliable safety closed loop.
    إقرأ المزيد
  • The Applicability of Temperature Test Chambers to the Testing of Household Environmental Products
    Oct 18, 2025
    A variety of products used in home environments (more common test objects) such as televisions, air conditioners, refrigerators, washing machines, smart speakers, routers, etc., as well as environmental protection products used to improve the home environment: such as air purifiers, fresh air systems, water purifiers, humidifiers/dehumidifiers, etc. No matter which category it is, as long as it needs to work stably for a long time in a home environment, it must undergo strict environmental reliability tests. The high and low temperature test chamber is precisely the core equipment for accomplishing this task.   The home environment is not always warm and pleasant, and products will face various harsh challenges in actual use. This mainly includes regional climate differences, ranging from the severe cold in Northeast China (below -30°C) to the scorching heat in Hainan (up to over 60°C in the car or on the balcony). High-temperature scenarios such as kitchens close to stoves, balconies exposed to direct sunlight, and stuffy attics, etc. Or low-temperature scenarios: warehouses/balconies without heating in northern winters, or near the freezer of refrigerators. The high and low temperature test chamber, by simulating these conditions, "accelerates" the aging of products in the laboratory and exposes problems in advance.   The actual test cases mainly cover the following aspects: 1. The smart TV was continuously operated at a high temperature of 55°C for 8 hours to test its heat dissipation design and prevent screen flickering and system freezing caused by overheating of the mainboard. 2. For products with lithium batteries (such as cordless vacuum cleaners and power tools), conduct charge and discharge cycles at -10°C to assess the battery performance and safety at low temperatures and prevent over-discharge or fire risks. 3. The air purifier (with both types of "environmental product" attributes) undergoes dozens of temperature cycles between -20°C and 45°C to ensure that its plastic air ducts, motor fixing frames and other structures will not crack or produce abnormal noises due to repeated thermal expansion and contraction. 4. Smart door lock: High-temperature and high-humidity test (such as 40°C, 93%RH) to prevent internal circuits from getting damp and short-circuited, which could lead to fingerprint recognition failure or the motor being unable to drive the lock tongue.   High and low temperature test chambers are not only applicable but also indispensable for the testing of household environmental products. By precisely controlling temperature conditions, it can ensure user safety and prevent the risk of fire or electric shock caused by overheating or short circuits. Ensure that the product can work stably in different climates and home environments to reduce after-sales malfunctions. And it can predict the service life of the product through accelerated testing. Therefore, both traditional home appliance giants and emerging smart home companies will take high and low temperature testing as a standard step in their product development and quality control processes.
    إقرأ المزيد
  • مبدأ موازنة درجة الحرارة داخل غرفة الاختبار بواسطة صمام الهواء
    Sep 22, 2025
    مبدأه الأساسي هو نظام تغذية راجعة سلبية مغلق الحلقة، يجمع بين "التسخين - القياس - التحكم". ببساطة، يتم التحكم بدقة في طاقة عناصر التسخين داخل الصندوق لمعادلة تبديد الحرارة الناتج عن البيئة الخارجية، وبالتالي الحفاظ على درجة حرارة اختبار ثابتة أعلى من درجة حرارة المحيط. عملية تثبيت درجة الحرارة بواسطة صمام الهواء هي حلقة مغلقة ديناميكية قابلة للتعديل باستمرار. أولاً، اضبط درجة الحرارة المستهدفة. يقيس مستشعر درجة الحرارة درجة الحرارة الفعلية داخل الصندوق آنياً، وينقل الإشارة إلى وحدة التحكم PID.عندما يحسب مُتحكم PID قيمة الخطأ، فإنه يحسب طاقة التسخين اللازمة للتعديل بناءً على قيمة الخطأ من خلال خوارزمية PID. ستأخذ الخوارزمية في الاعتبار ثلاثة عوامل:P (النسبة): ما حجم خطأ التيار؟ كلما زاد الخطأ، اتسع نطاق ضبط طاقة التسخين.التكامل (I): تراكم الأخطاء على مدى فترة زمنية محددة. يُستخدم لإزالة الأخطاء الثابتة (على سبيل المثال، إذا كان هناك انحراف طفيف دائمًا، فسيزيد حد التكامل تدريجيًا من قدرته على إزالته تمامًا).D (تفاضلي): معدل تغير خطأ التيار. إذا اقتربت درجة الحرارة بسرعة من الهدف، فسيتم تقليل طاقة التسخين مسبقًا لمنع تجاوز الحد.3. يرسل متحكم PID الإشارة المحسوبة إلى متحكم الطاقة في عنصر التسخين (مثل مرحل الحالة الصلبة SSR)، مما ينظم بدقة الجهد أو التيار المطبق على سلك التسخين، وبالتالي التحكم في توليد الحرارة.٤. تعمل مروحة الدوران باستمرار لضمان توزيع الحرارة الناتجة عن التسخين بسرعة وبشكل متساوٍ. وفي الوقت نفسه، تُرسل إشارات مستشعر درجة الحرارة إلى وحدة التحكم بسرعة، مما يُحسّن استجابة النظام. يقيس جهاز موازنة صمام الهواء حجم الهواء، بينما تتغير كثافة الهواء بتغير درجة الحرارة. عند نفس قيمة الضغط التفاضلي، يختلف معدل تدفق الكتلة أو معدل تدفق الحجم للهواء ذي الكثافات المختلفة. لذلك، يجب تثبيت درجة الحرارة عند قيمة ثابتة معروفة ليتمكن المعالج الدقيق داخل الجهاز من حساب قيمة حجم الهواء بدقة في الظروف القياسية بناءً على قيمة الضغط التفاضلي المقاسة باستخدام الصيغة المحددة مسبقًا. في حال عدم استقرار درجة الحرارة، ستكون نتائج القياس غير موثوقة.
    إقرأ المزيد
  • بناء بيئة اختبار آمنة لغرفة الاختبار
    Sep 16, 2025
    مفتاح إنشاء بيئة اختبار آمنة للمختبر غرفة اختبار درجات الحرارة العالية والمنخفضة تكمن مهمتنا في ضمان السلامة الشخصية وسلامة المعدات وسلامة قطعة الاختبار ودقة البيانات.1. اعتبارات السلامة الشخصيةقبل فتح باب حجرة درجة الحرارة العالية لإخراج العينة، يُنصح بارتداء معدات الوقاية المقاومة لدرجات الحرارة العالية والمنخفضة. عند القيام بعمليات قد تُسبب تناثرًا أو تسرب غازات شديدة الحرارة أو البرودة، يُنصح بارتداء قناع وجه أو نظارات واقية.يجب تركيب غرفة الاختبار في مختبر جيد التهوية، وتجنب تشغيلها في مساحة ضيقة. قد يؤدي الاختبار في درجات حرارة عالية إلى إطلاق مواد متطايرة من قطعة الاختبار. التهوية الجيدة تمنع تراكم الغازات الضارة.تأكد من أن مواصفات سلك الطاقة مطابقة لمتطلبات الجهاز، وأن سلك التأريض موصول بشكل موثوق. والأهم من ذلك، يُمنع منعًا باتًا لمس المقابس والمفاتيح الكهربائية والعينات بأيدٍ مبللة لتجنب الصدمات الكهربائية. 2. قم بتثبيت المعدات بشكل صحيحيجب ترك مسافة أمان دنيا تحددها الشركة المصنعة (عادةً ما لا تقل عن 50-100 سم) على ظهر الجهاز وأعلى وجانبيه لضمان التشغيل السليم للمكثف والضاغط وأنظمة تبديد الحرارة الأخرى. قد يؤدي سوء التهوية إلى ارتفاع درجة حرارة الجهاز وانخفاض أدائه، بل وحتى نشوب حريق.من المستحسن توفير خط طاقة مخصص لغرفة الاختبار لتجنب مشاركة نفس الدائرة مع معدات أخرى عالية الطاقة (مثل مكيفات الهواء والأجهزة الكبيرة)، مما قد يتسبب في تقلبات الجهد أو التعثر.يُنصح بأن تتراوح درجة حرارة تشغيل الجهاز بين 5 و30 درجة مئوية. ستؤدي درجات الحرارة المرتفعة جدًا إلى زيادة الحمل على الضاغط بشكل كبير، مما يؤدي إلى انخفاض كفاءة التبريد وحدوث أعطال. يُرجى العلم بأنه لا ينبغي تركيب الجهاز تحت أشعة الشمس المباشرة، أو بالقرب من مصادر الحرارة، أو في أماكن ذات اهتزازات قوية. 3. ضمان صحة الاختبارات وإمكانية تكرارهايجب وضع العينات في منتصف حجرة العمل داخل الصندوق. يجب توفير مساحة كافية بين العينات، وبينها وبين جدار الصندوق (يُنصح عادةً بأن تزيد عن 50 مم)، لضمان دوران هواء سلس داخل الصندوق ودرجة حرارة ثابتة وموحدة.بعد إجراء اختبارات درجات الحرارة العالية والرطوبة العالية (مثل غرفة درجة الحرارة والرطوبة الثابتة)، إذا كانت هناك حاجة إلى اختبارات درجات الحرارة المنخفضة، فيجب إجراء عمليات إزالة الرطوبة لمنع تكوين الجليد المفرط داخل الغرفة، مما قد يؤثر على أداء المعدات.يُمنع منعًا باتًا اختبار المواد القابلة للاشتعال والانفجار والتآكل الشديد والتطاير، باستثناء غرف الاختبار المقاومة للانفجار والمُصممة خصيصًا لهذا الغرض. كما يُمنع منعًا باتًا وضع المواد الخطرة، مثل الكحول والبنزين، في غرف الاختبار العادية ذات درجات الحرارة العالية والمنخفضة. 4. مواصفات التشغيل الآمن وإجراءات الطوارئقبل التشغيل، تأكد من إحكام إغلاق باب الصندوق، ووظيفة قفله سليمة. تأكد من نظافة الصندوق وخلوه من أي أجسام غريبة. تأكد من صحة منحنى درجة الحرارة المضبوط (البرنامج).أثناء فترة الاختبار، من الضروري التحقق بانتظام مما إذا كانت حالة تشغيل المعدات طبيعية وما إذا كان هناك أي ضوضاء أو إنذارات غير طبيعية.قواعد التعامل مع العينات ووضعها: ارتدِ قفازات مقاومة للحرارة العالية والمنخفضة بشكل صحيح. بعد فتح الباب، أدر جسمك قليلاً إلى الجانب لتجنب وصول موجة الحر إلى وجهك. أخرج العينة بسرعة وحذر وضعها في مكان آمن.الاستجابة للطوارئ: تعرّف على موقع زر إيقاف الطوارئ الخاص بالجهاز أو كيفية فصل التيار الكهربائي الرئيسي بسرعة في حالات الطوارئ. يُنصح بتوفير طفايات حريق ثاني أكسيد الكربون (المناسبة للحرائق الكهربائية) في مكان قريب بدلاً من طفايات الحريق المائية أو الرغوية.
    إقرأ المزيد
  • دليل اختبار الضغط المنخفض لغرفة الاختبار الثلاثية المعملية
    Sep 13, 2025
    النظام الأساسي لـ غرفة اختبار ثلاثية التركيب يتكون النظام بشكل أساسي من غرفة اختبار تحمل الضغط، ونظام تفريغ، ونظام خاص للتحكم في درجة الحرارة والرطوبة، ووحدة تحكم تعاونية عالية الدقة. وهو في جوهره مجموعة معقدة من المعدات التي تتكامل بشكل وثيق مع غرفة بيئة درجة الحرارة والرطوبة، وطاولة اهتزاز، ونظام تفريغ (محاكاة عالية الدقة). عملية إجراء اختبارات الضغط المنخفض هي عملية تحكم تعاونية دقيقة. بأخذ اختبار درجة الحرارة والضغط المنخفضين كمثال، تكون عملية الاختبار كما يلي: ١. مرحلة التحضير: ثبّت العينة بإحكام على سطح الطاولة الاهتزازية داخل الصندوق (إذا لم تكن هناك حاجة للاهتزاز، ثبّتها على رف العينات)، وأغلق باب الصندوق بإحكام لضمان فعالية شريط الختم عالي القوة. اضبط برنامج الاختبار الكامل على واجهة التحكم، بما في ذلك: منحنى الضغط، ومنحنى درجة الحرارة، ومنحنى الرطوبة، ومنحنى الاهتزاز.٢. التفريغ والتبريد: يُشغّل نظام التحكم مضخة التفريغ، وينفتح صمام التفريغ لسحب الهواء من داخل الصندوق. في هذه الأثناء، يبدأ نظام التبريد بالعمل، مُرسلاً هواءً باردًا إلى داخل الصندوق، فتنخفض درجة الحرارة. يُنسّق نظام التحكم ديناميكيًا بين سرعة ضخ مضخة التفريغ وقوة نظام التبريد. فعندما يصبح الهواء رقيقًا، تنخفض كفاءة التوصيل الحراري بشكل كبير، وتزداد صعوبة التبريد. قد لا يبرد النظام تمامًا إلا عندما ينخفض ​​ضغط الهواء إلى مستوى مُعين.٣. مرحلة صيانة الضغط المنخفض/درجة الحرارة المنخفضة: بمجرد وصول كلٍّ من الضغط ودرجة الحرارة إلى القيم المُحددة، يدخل النظام في حالة الصيانة. ونظرًا لوجود تسريب ضئيل للغاية في أي صندوق، سيراقب مستشعر الضغط ضغط الهواء فورًا. عندما يتجاوز ضغط الهواء القيمة المُحددة، تبدأ مضخة التفريغ تلقائيًا بضخ كمية قليلة، مع الحفاظ على الضغط ضمن نطاق دقيق للغاية.٤. الترطيب هو الخطوة الأكثر تعقيدًا. إذا كان من الضروري محاكاة رطوبة عالية في بيئة مرتفعة ومنخفضة الضغط، فسيُفعّل نظام التحكم مولد البخار الخارجي، ثم يُضخّ البخار المُولّد ببطء في صندوق الضغط المنخفض عبر صمام ضغط وقياس خاص، وسيُوفّر مستشعر الرطوبة تحكمًا راجعًا.٥. بعد انتهاء فترة الاختبار، يدخل النظام مرحلة الاستعادة. يفتح جهاز التحكم صمام تخفيف الضغط أو صمام حقن الهواء ببطء للسماح بدخول الهواء الجاف المفلتر ببطء إلى الصندوق، مما يسمح بعودة ضغط الهواء إلى الضغط الطبيعي تدريجيًا. عندما يستقر ضغط الهواء ودرجة حرارته عند درجة حرارة الغرفة والضغط الطبيعي، يرسل جهاز التحكم إشارة تشير إلى انتهاء الاختبار. بعد ذلك، يمكن للمشغل فتح باب الصندوق وإخراج العينة لاختبار الأداء وتقييمه لاحقًا. يُعد اختبار الضغط المنخفض لغرفة الاختبار ثلاثية التركيبات عمليةً بالغة التعقيد، تعتمد على التنسيق الدقيق بين غرفتها المقاومة للضغط، ونظام التفريغ القوي، ونظام التحكم في درجة الحرارة والرطوبة المُصمم خصيصًا لبيئات الضغط المنخفض. ويُمكنها محاكاة الاختبارات القاسية التي تتحملها المنتجات في بيئات الارتفاعات العالية والارتفاعات الشاهقة وغيرها، بما في ذلك البرد القارس، وانخفاض الأكسجين (انخفاض ضغط الهواء)، والرطوبة. ويُعدّ جهاز اختبار رئيسيًا لا غنى عنه في مجالات مثل الفضاء، والصناعات العسكرية، وإلكترونيات السيارات.
    إقرأ المزيد
  • كيفية اختيار طريقة التبريد المناسبة لغرف الاختبار؟
    Sep 09, 2025
    يُعدّ التبريد الهوائي والتبريد المائي طريقتين رئيسيتين لتبديد الحرارة في معدات التبريد. يكمن الاختلاف الجوهري بينهما في اختلاف الوسائط المستخدمة لتصريف الحرارة المتولدة من النظام إلى البيئة الخارجية: يعتمد التبريد الهوائي على الهواء، بينما يعتمد التبريد المائي على الماء. وقد أدى هذا الاختلاف الجوهري إلى اختلافات عديدة بينهما من حيث التركيب والاستخدام والتكلفة وحالات الاستخدام. 1. نظام تبريد الهواءيعتمد مبدأ عمل نظام التبريد الهوائي على دفع الهواء عبر مروحة، ودفعه فوق مُكَوِّن تبديد الحرارة الأساسي - المُكثِّف ذو الزعانف - مما يُؤدّي إلى سحب الحرارة من المُكثِّف وتبديدها في الهواء المُحيط. تركيبه بسيط ومرن للغاية. يعمل الجهاز ببساطة عن طريق توصيله بمصدر الطاقة، ولا يتطلب أي دعم إضافي، مما يُقلل من متطلبات تجديد الموقع. يتأثر أداء التبريد هذا بشكل كبير بدرجة الحرارة المحيطة. ففي فصول الصيف الحارة أو البيئات ذات درجات الحرارة العالية وسوء التهوية، تنخفض كفاءة تبديد الحرارة بشكل ملحوظ بسبب انخفاض فرق درجة الحرارة بين الهواء والمُكثِّف، مما يُؤدّي إلى انخفاض في قدرة الجهاز على التبريد وزيادة في استهلاك الطاقة التشغيلية. علاوة على ذلك، يُصاحب ذلك ضوضاء عالية للمروحة أثناء التشغيل. عادةً ما يكون الاستثمار الأولي منخفضًا، وصيانته اليومية بسيطة نسبيًا. المهمة الرئيسية هي تنظيف الغبار من زعانف المُكثِّف بانتظام لضمان تهوية جيدة. تكلفة التشغيل الرئيسية هي استهلاك الكهرباء. تعتبر الأنظمة المبردة بالهواء مناسبة للغاية للمعدات الصغيرة والمتوسطة الحجم، والمناطق ذات الكهرباء الوفيرة ولكن موارد المياه نادرة أو الوصول إلى المياه غير مريح، والمختبرات ذات درجات الحرارة البيئية التي يمكن التحكم فيها، وكذلك المشاريع ذات الميزانيات المحدودة أو تلك التي تفضل عملية التثبيت البسيطة والسريعة. 2. نظام التبريد بالماءيعتمد مبدأ عمل نظام التبريد المائي على استخدام الماء الدائر المتدفق عبر مكثف مُبرّد بالماء لامتصاص حرارة النظام وتبديدها. يُنقل الماء الساخن عادةً إلى برج التبريد الخارجي للتبريد، ثم يُعاد تدويره. يُعد تركيبه معقدًا ويتطلب مجموعة كاملة من أنظمة المياه الخارجية، بما في ذلك أبراج التبريد ومضخات المياه وشبكات أنابيب المياه وأجهزة معالجة المياه. لا يقتصر هذا على تثبيت موقع تركيب المعدات فحسب، بل يُضيف أيضًا متطلبات عالية إلى تخطيط الموقع والبنية التحتية. يتميز النظام بثباته العالي في تبديد الحرارة، ولا يتأثر عمليًا بتغيرات درجة حرارة البيئة الخارجية. في الوقت نفسه، يكون ضوضاء التشغيل بالقرب من هيكل المعدات منخفضًا نسبيًا، كما أن استثماره الأولي مرتفع. إلى جانب استهلاك الكهرباء، هناك أيضًا تكاليف أخرى، مثل الاستهلاك المستمر لموارد المياه أثناء التشغيل اليومي. كما أن أعمال الصيانة أكثر احترافية وتعقيدًا، وهي ضرورية لمنع تكون الترسبات الكلسية والتآكل ونمو الميكروبات. تعتبر الأنظمة المبردة بالماء مناسبة بشكل أساسي للمعدات الصناعية الكبيرة عالية الطاقة، وورش العمل ذات درجات الحرارة المحيطة العالية أو ظروف التهوية السيئة، بالإضافة إلى المواقف التي تتطلب استقرارًا كبيرًا للغاية في درجة الحرارة وكفاءة التبريد. لا يقتصر الاختيار بين التبريد الهوائي والتبريد المائي على الحكم على تفوقهما المطلق أو دونيتهما، بل يتعلق بإيجاد الحل الأنسب لظروف كل فرد. ينبغي أن تستند القرارات إلى الاعتبارات التالية: أولاً، عادةً ما تُفضل المعدات الكبيرة عالية الطاقة التبريد المائي لتحقيق أداء مستقر. في الوقت نفسه، يجب تقييم المناخ الجغرافي للمختبر (سواء كان حارًا أم لا)، وظروف إمداد المياه، ومساحة التركيب، وظروف التهوية. ثانيًا، إذا تم تقييم استثمار أولي منخفض نسبيًا، فإن التبريد الهوائي هو الخيار المناسب. إذا كان التركيز على كفاءة الطاقة التشغيلية واستقرارها على المدى الطويل، ولم يكن المرء يمانع في تكلفة البناء الأولية المرتفعة نسبيًا، فإن التبريد المائي له مزايا أكثر. أخيرًا، من الضروري مراعاة ما إذا كان لدى الشخص القدرة المهنية على إجراء صيانة دورية لأنظمة المياه المعقدة.
    إقرأ المزيد
1 2 3 4 5 6
ما مجموعه 6الصفحات

اترك رسالة

اترك رسالة
إذا كنت مهتما بمنتجاتنا وتريد معرفة المزيد من التفاصيل ، فالرجاء ترك رسالة هنا ، وسوف نقوم بالرد عليك في أقرب وقت ممكن.
إرسال

وطن

منتجات

واتس اب

اتصل بنا