شعار
وطن

غرفة اختبار الرطوبة بدرجة حرارة عالية ومنخفضة

غرفة اختبار الرطوبة بدرجة حرارة عالية ومنخفضة

  • Common Problems and Solutions for Dual 85 Testing of Temperature and Humidity Test Chambers
    Dec 09, 2025
        This guide summarizes key issues and solutions for temperature & humidity test chambers during dual 85 testing (85℃, 85% RH), focusing on quick troubleshooting and long-term maintenance for operators and customers. I. Core Issues & Resolution System Each issue includes root cause, immediate solution, and long-term prevention (except for defect exposure). 1. Failure to Reach 85% RH Root Cause: Compressor over-dehumidifies—evaporator temperature below dew point (79-80℃) causes condensation, outpacing humidification. Immediate Solution: Disable compressor; run only heating and humidification to maintain 85℃ and avoid condensation. Prevention: Regularly calibrate humidifier atomization volume and check evaporator temperature sensor accuracy. 2. Temperature Out-of-Control/Fluctuations Root Cause: Mainly faulty solid-state relays (keeps heating elements on), plus aging heating tubes or defective temperature sensors. Immediate Solution: Cut power; inspect circuit with multimeter (relay on-off, heating tube damage, sensor accuracy) and replace faulty parts. Prevention: 10-15min pre-calibration before testing; replace vulnerable parts (relays, sensors) every 1000 operating hours. 3. Water Marks/Condensation on Products Root Cause: Residual oil/dust on products, or dense samples blocking air ducts (poor circulation, localized high humidity). Immediate Solution: Pause test; clean products with anhydrous ethanol, dry, and reposition samples for proper spacing. Prevention: Establish pre-test cleaning standards; clean air duct filters regularly and optimize sample rack layout. 4. Incorrect Operation Logic Root Cause: Operator errors—misactivated refrigeration, wrong parameters (fast heating, delayed humidification), or mismatched operation modes. Immediate Solution: Reset program (disable refrigeration, set 85℃/85% RH, sync humidification with heating). Prevention: Develop SOPs; new employees must pass operation assessments (including simulated faults). 5. Material/Process Defect Exposure Root Cause: Extreme environment accelerates aging—e.g., poor heat-resistant EVA film hydrolyzes (yellowing, delamination); leaky electronic packages cause corrosion/short circuits. Measures: Inspect products post-test, record defects; judge qualification by material standards; optimize processes (e.g., use hydrolysis-resistant EVA, enhance sealant density).
    إقرأ المزيد
  • What do you know about test chamber safety protection settings?
    Dec 04, 2025
        Test chambers, as core equipment for environmental reliability testing across industries such as electronics, automotive, aerospace, and new energy, rely on a multi-dimensional, redundant safety protection system to ensure long-term operational stability, personnel safety, and the integrity of test samples and equipment. Beyond basic safety guarantees, these protection mechanisms are designed to adapt to complex test scenarios and extreme environmental conditions. Here’s a professional and detailed breakdown of the core protection settings: 1. Refrigeration System Protection Compressor protection: Equipped with overpressure, overheating, and overcurrent triple protection mechanisms. Real-time monitoring of operating pressure, exhaust temperature, and working current prevents compressor burnout, cylinder scuffing, or seal damage caused by abnormal conditions such as refrigerant leakage, pipeline blockage, or voltage fluctuations. Refrigerant protection: Integrated high/low pressure switches and overload protection devices continuously monitor the refrigerant circulation system. When pressure exceeds the safe threshold or the system is overloaded, the device automatically cuts off the corresponding circuit and triggers an alarm, ensuring stable refrigerant flow and avoiding system damage due to pressure anomalies. 2. Test Area Protection Multi-layer over-temperature protection (redundant design): 1st layer: Adjustable high/low temperature over-temperature protection, dynamically linked to the set operating control temperature. When the test area temperature deviates from the set range by a preset value, the system automatically adjusts the heating/cooling module or pauses operation to prevent sample damage. 2nd/3rd layers: Independent electronic high-temperature over-temperature protection devices (double redundancy). Directly connected to the power supply circuit, these devices bypass the main control system to cut off power immediately if the 1st layer protection fails, eliminating potential fire hazards or equipment damage caused by excessive temperature. Fan motor overcurrent protection: Monitors the operating current of the test area circulation fan. If the motor jams, wears, or experiences current surges due to other faults, the protection system triggers an alarm and cuts off power to avoid motor burnout and ensure uniform temperature distribution in the test chamber. Fault alarm system: Integrates sound and light alarms with a digital display. When abnormalities occur (e.g., over-temperature, water shortage, or sensor failure), the system immediately cuts off the relevant power supply, activates the alarm, and displays the specific fault cause on the control panel for quick troubleshooting. Active water shortage reminder: For humidity-controlled test chambers, a real-time water level monitoring sensor in the humidity water tank triggers an audible and visual alarm when the water level is too low. The system pauses the humidity control function to prevent dry burning of the humidifier and ensure the stability of the humidity control system. Dynamic high/low temperature protection: Real-time adapts to the set test parameters (temperature range, rate of change). During rapid temperature rise/fall or extreme temperature tests, the protection system dynamically adjusts the safety threshold to avoid false triggers while ensuring comprehensive protection against temperature anomalies. 3. General Electrical Protection Main power supply protection: Equipped with phase sequence and phase loss protection devices. Automatically detects the phase sequence and integrity of the three-phase power supply; if phase sequence reversal or phase loss occurs, the system locks the power supply and alarms to prevent damage to the compressor, fan, and other core components caused by incorrect power supply. Short circuit & leakage/surge protection: Configured with high-sensitivity short circuit breakers to quickly cut off power in case of line short circuits, avoiding electrical fires or component burnout. Equipped with leakage circuit breakers and RC electronic surge protectors to prevent electric shock hazards caused by equipment leakage and suppress voltage surges from the power grid, protecting the control system and electronic components. Sensor self-detection: Real-time self-inspection of temperature, humidity, and other key sensors. If a sensor malfunctions (e.g., signal loss, inaccurate measurement), the system immediately alarms and switches to backup sensor data (if equipped) or pauses operation to ensure the reliability of test data and prevent misoperation due to false sensor signals. Dry heating protection (humidity water circuit): For the humidity water circuit and humidifier, a dedicated dry heating protection device monitors the water level and heating status. If the humidifier heats without water, the protection system cuts off the heating power immediately to avoid humidifier burnout and extend the service life of the humidity system. Expandable protection: Reserved 2 fault detection input interfaces, supporting customized addition of special protection modules (e.g., gas leakage protection for flammable/explosive test samples, pressure protection for sealed test chambers) to meet the safety requirements of industry-specific test scenarios. These multi-layered, redundant, and configurable protection mechanisms form a comprehensive safety barrier for test chambers. Whether in routine reliability testing or extreme environmental simulations, they ensure the equipment operates stably and reliably, while maximally safeguarding the safety of operators, test samples, and the equipment itself—becoming a key guarantee for the accuracy of test results and long-term operational efficiency.
    إقرأ المزيد
  • Energy-Saving Environmental Test Chamber: Safeguard Your Long-Term Product Costs
    Dec 01, 2025
    For enterprises in manufacturing, electronic technology, and related industries, product reliability testing is a critical quality assurance link. However, the operational costs of environmental test chambers—core testing equipment—are often overlooked. Many businesses focus solely on testing precision during procurement, only to be troubled by high energy bills in long-term use. Our energy-saving environmental test chamber effectively resolves the conflict between "accurate testing" and "cost control," providing comprehensive support for product lifecycle cost management. Core Energy-Saving Feature: Intelligent Refrigeration System Regulation As the primary energy-consuming component of environmental test chambers, the energy regulation technology of the refrigeration system directly determines the equipment’s energy efficiency. On the premise of meeting core technical indicators, this test chamber innovatively integrates multiple energy adjustment measures to achieve intelligent dynamic control of refrigeration capacity. The system precisely regulates evaporation temperature via the controller and links it with a hot gas bypass energy adjustment mechanism, matching refrigeration demand in real time based on the required cooling rate and target temperature range. When approaching the set low temperature, the system automatically reduces refrigeration capacity to avoid temperature overshoot—a common issue in traditional models—ensuring test stability. During the constant temperature phase, it abandons the energy-intensive "hot-cold balance" mode, optimizing energy utilization at the source. Verified in real operating conditions, the energy-saving effect reaches up to 30%, significantly reducing long-term operational costs, especially for enterprises requiring 24/7 continuous operation. Precision & Energy Efficiency: Optimized Heating System Power Control Refined control of the heating system further enhances the equipment’s energy-saving advantages and temperature control precision. The system adopts a synergistic control scheme of temperature controllers and thyristors: the temperature controller collects real-time temperature signals and issues control commands, while thyristors precisely adjust the heater’s power output. When the temperature is far below the set value, thyristors deliver full power for rapid heating. As the temperature gradually approaches the set value, the output power decreases incrementally; once the target temperature is reached, power output stops immediately. This on-demand power distribution mode eliminates energy waste and ensures precise temperature control, providing a stable and reliable temperature environment for tests. For example: When the internal temperature is significantly lower than the set value, thyristors operate at full power, and the heater runs at maximum load to ensure rapid temperature rise. As the temperature nears the target, the thyristor’s output power gradually decreases. Once the target temperature is achieved, the thyristor stops power output immediately, and the heater enters standby mode. This "on-demand power supply" mode eliminates the drawback of "frequent start-stop" in traditional heating systems—avoiding ineffective energy consumption while greatly improving temperature control precision, making it particularly suitable for test scenarios requiring high temperature stability. Dual-System Synergy: Safeguard Enterprise Costs From the refrigeration system’s intelligent energy adjustment to the heating system’s precision power control, our environmental test chamber centers on dual-system collaborative energy-saving technology. While ensuring accurate test data, it maximizes energy cost reduction. Choosing our test chamber not only guarantees product testing quality but also enables scientific management of enterprise operational costs, providing peace of mind throughout your product R&D and production processes. In addition, if your enterprise is seeking a cost-effective environmental test chamber or struggling with high energy consumption from existing equipment, we recommend focusing on our energy-saving model. Let professional equipment protect your product quality while reducing costs and enhancing efficiency for your business.
    إقرأ المزيد
  • How to Achieve Precise Temperature Control in High-Low Temperature Test Chambers? The Q8 Series Controller Has the Answer
    Nov 29, 2025
    As the "control core" of high-low temperature test chambers, the Q8 Series Controller delivers stable support for environmental reliability testing with full-scenario adaptability, ultra-high precision, and multiple safety designs. Whether for extreme testing of electronic components or weather resistance verification of new materials, its rich functions and user-friendly design meet the rigorous requirements of scientific research, industrial production, and other fields. I. Intuitive Touch Interaction: Doubling Operational Efficiency Adopting full-touch interaction, the Q8 Controller features a high-definition touchscreen with sensitive response, enabling parameter setting, program startup, and other operations with simple finger taps—no professional training required for new users. The customizable interface allows pinning frequently used functions, significantly reducing configuration time for complex tests and adapting to high-frequency, multi-batch testing scenarios. II.  0.01-Class Precision: Core Guarantee for Accurate Data Equipped with a high-precision data acquisition module and intelligent PID algorithm, the Q8 achieves 0.01-class temperature control precision, capturing real-time temperature fluctuations inside the chamber and adjusting rapidly. Within the wide temperature range of -80℃~150℃, the fluctuation is stabilized at ±0.01℃, avoiding temperature deviations in sensitive tests such as semiconductor and aerospace component testing, and providing authoritative data for product reliability evaluation. III. Versatile Adaptability: Meeting Multi-Scenario Needs Compatible with PT100, thermocouples, and other sensors, the Q8 supports flexible switching to reduce equipment upgrade costs. Its cooling output function precisely controls the refrigeration system to minimize energy waste, while the transmission output converts temperature data into standard electrical signals, seamlessly connecting to data acquisition systems for automatic upload and traceability of test data. IV.  Massive Storage: Intelligent Manager for Complex Processes Catering to multi-stage testing needs (e.g., automotive parts), the Q8 supports storage of 100 process programs, each with up to 50 steps. Operators can preset parameters such as temperature and holding time to simulate working conditions like day-night cycles and extreme temperature shocks. Programs can be activated with one click for continuous operation, enhancing the standardization and efficiency of batch testing. V.  EVT Function: Early Warning Barrier for Test Safety The Q8’s EVT (Event Verification Test) function monitors temperature abnormalities, sensor failures, and other issues in real time. When thresholds are triggered, it activates audio-visual alarms and records fault information. Supporting hierarchical fault handling, it automatically adjusts parameters to resume testing for minor anomalies and shuts down urgently for severe faults, safeguarding unattended long-duration tests. Conclusion: Empowering Test Reliability with Strong Capabilities Integrating intuitive touch operation, 0.01-class precision, versatile adaptability, and comprehensive safety guarantees, the Q8 Controller fully meets the core requirements of high-low temperature testing. Whether for precise scientific research or production quality control, its stable performance and intelligent design serve as the core competitiveness of test chambers, helping industries improve product quality.
    إقرأ المزيد
  • Got Your Temperature Test Chamber? Here’s What You Must Do Next!
    Nov 28, 2025
    I. Receipt Inspection  1. Physical Verification Confirm equipment model, specifications, and serial number match the contract/packing list to avoid wrong delivery. Inspect the cabinet, door, and control panel for transportation damage (dents, deformation) and ensure pipelines/wiring are intact without loosening. 2. Accessory & Document Check Required accessories: Power cord, sample shelves, sealing rings, wrenches, and other tools (verify against the packing list). Technical documents: Operation/maintenance manual, calibration certificate, warranty card, and qualification certificate (all mandatory for after-sales service). 3. Abnormal Handling In case of damage or missing items: Immediately take photos (overall equipment, damaged details, packing list), notify the supplier within 24 hours to submit a claim, and sign the "Acceptance Objection Form" for documentation. II. Installation & Deployment (Compliant Installation Ensures Performance) 1. Environment Requirements (Must Meet the Following) Floor: Flat and sturdy, with load-bearing capacity ≥1.2 times the equipment weight (to avoid test errors caused by vibration). Space: ≥30cm ventilation gap around the cabinet; keep away from heat sources, water sources, dust, and strong electromagnetic interference. Power supply: Match the rated voltage (e.g., 380V three-phase five-wire/220V single-phase), grounding resistance ≤4Ω, and equip an independent air switch (power ≥1.2 times the equipment's rated power). Environment: Room temperature 15-35℃, humidity ≤85%RH (no condensation); water-cooled models require pre-connected cooling water circuits meeting specifications. 2. Basic Installation Steps Level the equipment: Adjust anchor bolts and use a level to confirm horizontal alignment (to prevent uneven stress on the refrigeration system). Wiring inspection: Connect the power supply per the manual and ensure correct neutral/grounding connections (a common cause of electrical failures). Consumable check: Confirm refrigerant and lubricating oil (if applicable) are properly filled with no leakage. III. Commissioning (Core: Verify Performance Compliance) 1. First Startup Procedure (1) Recheck power/pipeline connections before power-on; switch on after confirmation. (2)Panel self-test: Ensure the display shows no error codes and buttons/indicators function normally. (3)No-load operation (2-4 hours): Set a common temperature range (e.g., -40℃~85℃) and monitor temperature fluctuation ≤±0.5℃ (meets industrial standards). Check door sealing (no obvious air leakage), operating noise ≤75dB, and normal start/stop of refrigeration/heating systems. 2. Load Verification (Simulate Actual Usage) Place a load equivalent to the test sample (weight/volume ≤80% of the equipment's rated load) without blocking air ducts. Set the target temperature and holding time; record if the heating/cooling rate meets technical parameters (e.g., -40℃~85℃ heating time ≤60 minutes). Alarm test: Simulate power failure, over-temperature, or door-open timeout to confirm timely alarm response (audio-visual alarm + shutdown protection). IV. Emergency Handling & After-Sales Coordination 1. Common Fault Resolution Error codes: Refer to the "Troubleshooting" section in the manual (e.g., E1=Over-temperature, E2=Power abnormality). Sudden failures: (e.g., electric leakage, abnormal noise, refrigeration failure) Immediately cut off power, stop use, and contact the supplier's technical support (do not disassemble independently). 2. After-Sales Support Retain the supplier's after-sales contact (phone + email) and confirm the warranty period (usually 1 year for the whole machine). Maintenance records: Request a "Maintenance Report" after each service and file it for future tracing.
    إقرأ المزيد
  • Key Differences in Using Environmental Test Chambers Between Summer and Winter
    Nov 26, 2025
    The core difference lies in the impact of ambient temperature and humidity variations on equipment operating efficiency, energy consumption, and test accuracy. Targeted measures for temperature/humidity control, heat dissipation/anti-freezing, and maintenance are required. Specific differences and precautions are as follows: I. Core Difference Comparison Table Dimension Summer Operation Characteristics Winter Operation Characteristics Ambient Conditions High temperature & high humidity (room temp: 30-40℃, RH: 60%-90%) Low temperature & low humidity (room temp: 0-15℃, RH: 30%-60%) Equipment Load High refrigeration system load, prone to overload High heating system load; humidification compensation required for certain models (e.g., temperature-humidity chambers) Impact on Test Accuracy High humidity causes condensation, affecting sensor accuracy Low temperature leads to pipeline freezing; low humidity may reduce stability of humidity tests Energy Consumption High refrigeration energy consumption High heating/humidification energy consumption   II. Season-Specific Precautions (1) Summer Operation: Focus on High Temperature/High Humidity/Overload Prevention 1. Ambient Heat Dissipation Management Reserve ≥50cm ventilation space around the chamber; avoid direct sunlight or proximity to heat sources (e.g., workshop ovens, air conditioner outlets). Ensure laboratory air conditioning operates normally, maintaining room temperature at 25-30℃. If room temp exceeds 35℃, install industrial fans or cooling devices to assist heat dissipation and prevent refrigeration system overload protection triggered by high ambient temperatures. 2. Moisture & Condensation Control Regularly clean chamber door gaskets with a dry cloth to prevent sealant aging and air leakage caused by high humidity. After humidity tests, open the chamber door promptly for ventilation and wipe off condensation to avoid moisture damage to sensors (e.g., humidity sensors). 3. Equipment Operation Protection Avoid prolonged continuous operation of extreme low-temperature tests (e.g., below -40℃). Recommend shutting down for 1 hour after 8 hours of operation to protect the compressor. Periodically inspect refrigeration system radiators (condensers) and remove dust/debris (blow with compressed air monthly) to ensure heat dissipation efficiency. (2) Winter Operation: Focus on Anti-Freezing/Low Humidity/Startup Failure Prevention 1. Ambient Temperature Guarantee Maintain laboratory temperature above 5℃ (strictly follow 10℃ if specified as the minimum operating temperature) to prevent pipeline freezing (e.g., refrigeration capillaries, humidification pipes). For unheated laboratories, install an insulation cover (with ventilation holes reserved) or activate the "preheating mode" (if supported) before testing. 2. Humidification System Maintenance Use distilled water in the humidification tank to avoid pipe blockage from impurity crystallization at low temperatures. Drain water from the humidification tank and pipelines during long-term non-use to prevent freezing-induced component damage. 3. Startup & Operation Specifications In low-temperature environments, activate "standby mode" for 30 minutes preheating before setting test parameters to avoid compressor burnout from excessive startup load. If startup fails (e.g., compressor inactivity), check power voltage (prone to instability during winter peak hours) or contact after-sales to inspect pipeline freezing. 4. Low Humidity Compensation For low-humidity tests (e.g., ≤30% RH), winter dryness may cause rapid humidity. Adjust humidification frequency appropriately and use the "humidity calibration" function to reduce fluctuations. III. General Precautions (All Seasons) Calibrate temperature/humidity sensors quarterly to ensure data accuracy. Clean air filters monthly to maintain airflow circulation. Arrange test samples evenly to avoid blocking internal air ducts and ensure temperature/humidity uniformity. For long-term non-use: Run the chamber for 1 hour monthly in summer (moisture prevention) and drain pipeline water in winter (freezing prevention). By addressing seasonal environmental variations, equipment service life can be extended, and test failures caused by temperature/humidity fluctuations avoided—aligning with the high precision and stability requirements of the industrial test equipment industry.    
    إقرأ المزيد
  • Common Faults and Practical Solutions for High-Low Temperature Humidity Test Chambers
    Nov 19, 2025
    High and low temperature humidity test chambers are key reliability testing equipment, widely used in electronics, automotive and biomedicine. Their stability directly affects test accuracy. This article summarizes common faults and solutions for efficient troubleshooting. I. Temperature-related Faults: Core Impact on Test Accuracy 1. Failure to Reach Set Temperature Fault Performance: Fails to reach target temperature when heating; slow or no cooling.Possible Causes: Abnormal power voltage, burned heater, compressor failure, fan stop, air duct blockage.Solutions: Verify power matches rated specs (220V/380V); check fan operation and clean duct debris; contact professionals to replace faulty parts if heater/compressor fails. 2. Large Temperature Fluctuation and Poor Uniformity Fault Performance: Excessive temperature difference in the chamber or frequent fluctuations near set value.Possible Causes: Abnormal fan speed, damaged air duct seals, over-dense samples blocking airflow.Solutions: Arrange samples for ventilation; check fan stability and replace damaged seals promptly. 3. Severe Temperature Overshoot Fault Performance: Temperature overshoots set value significantly before dropping.Possible Causes: Improper controller settings, energy regulation system failure.Solutions: Restart to reset parameters; if unresolved, have technicians calibrate controller or overhaul regulation modules. II. Humidity-related Faults: Directly Linked to Test Environment Stability 1. Failure to Reach Set Humidity Fault Performance: Slow or no humidification.Possible Causes: Empty humidification tank, faulty water level sensor, burned humidifier tube, blocked solenoid valve.Solutions: Replenish water; clean valve filter; replace tube or repair sensor if humidifier fails to heat. 2. High Humidity That Cannot Be Reduced Fault Performance: Humidity remains above set value; dehumidification fails.Possible Causes: Faulty dehumidification system, poor chamber sealing, high ambient humidity.Solutions: Check door seals and reduce ambient humidity; report for repair if dehumidification module fails. 3. Abnormal Humidity Display Fault Performance: Humidity reading jumps, disappears or deviates greatly from reality.Possible Causes: Aging humidity sensor, contaminated probe.Solutions: Wipe probe with clean cloth; calibrate or replace sensor if inaccuracy persists. III. Operation and Circulation Faults: Ensure Basic Equipment Operation 1. Fan Not Rotating or Making Abnormal Noise Possible Causes: Motor damage, foreign objects in fan blades, worn bearings.Solutions: Clean debris after power-off; replace motor or bearings if fault persists. 2. Compressor Abnormality Fault Performance: Compressor fails to start or stops frequently after starting.Possible Causes: Power phase loss, overload protection trigger, refrigerant leakage.Solutions: Check three-phase wiring; retry after overload reset; report for refrigerant and compressor inspection if fault recurs. 3. Equipment Alarm Fault Performance: Alarms like "phase loss" or "overload" activate.Possible Causes: Triggered protection from wrong phase sequence, unstable voltage or overheated components.Solutions: Troubleshoot per alarm; restart after 30-minute cooldown for overload; report if ineffective. IV. Core Notes 1. Always power off before troubleshooting to avoid shock or component damage.2. Contact professionals for complex repairs (compressors, refrigerants, circuit boards); do not disassemble yourself.3. Regularly clean air ducts, filters and sensors to reduce over 80% of common faults.
    إقرأ المزيد
  • The Applicability of Temperature Test Chambers to the Testing of Household Environmental Products
    Oct 18, 2025
    A variety of products used in home environments (more common test objects) such as televisions, air conditioners, refrigerators, washing machines, smart speakers, routers, etc., as well as environmental protection products used to improve the home environment: such as air purifiers, fresh air systems, water purifiers, humidifiers/dehumidifiers, etc. No matter which category it is, as long as it needs to work stably for a long time in a home environment, it must undergo strict environmental reliability tests. The high and low temperature test chamber is precisely the core equipment for accomplishing this task.   The home environment is not always warm and pleasant, and products will face various harsh challenges in actual use. This mainly includes regional climate differences, ranging from the severe cold in Northeast China (below -30°C) to the scorching heat in Hainan (up to over 60°C in the car or on the balcony). High-temperature scenarios such as kitchens close to stoves, balconies exposed to direct sunlight, and stuffy attics, etc. Or low-temperature scenarios: warehouses/balconies without heating in northern winters, or near the freezer of refrigerators. The high and low temperature test chamber, by simulating these conditions, "accelerates" the aging of products in the laboratory and exposes problems in advance.   The actual test cases mainly cover the following aspects: 1. The smart TV was continuously operated at a high temperature of 55°C for 8 hours to test its heat dissipation design and prevent screen flickering and system freezing caused by overheating of the mainboard. 2. For products with lithium batteries (such as cordless vacuum cleaners and power tools), conduct charge and discharge cycles at -10°C to assess the battery performance and safety at low temperatures and prevent over-discharge or fire risks. 3. The air purifier (with both types of "environmental product" attributes) undergoes dozens of temperature cycles between -20°C and 45°C to ensure that its plastic air ducts, motor fixing frames and other structures will not crack or produce abnormal noises due to repeated thermal expansion and contraction. 4. Smart door lock: High-temperature and high-humidity test (such as 40°C, 93%RH) to prevent internal circuits from getting damp and short-circuited, which could lead to fingerprint recognition failure or the motor being unable to drive the lock tongue.   High and low temperature test chambers are not only applicable but also indispensable for the testing of household environmental products. By precisely controlling temperature conditions, it can ensure user safety and prevent the risk of fire or electric shock caused by overheating or short circuits. Ensure that the product can work stably in different climates and home environments to reduce after-sales malfunctions. And it can predict the service life of the product through accelerated testing. Therefore, both traditional home appliance giants and emerging smart home companies will take high and low temperature testing as a standard step in their product development and quality control processes.
    إقرأ المزيد
  • مبدأ عمل التبريد الميكانيكي بالضغط الهوائي المصاحب للمختبر مبدأ عمل التبريد الميكانيكي بالضغط الهوائي المصاحب للمختبر
    Sep 06, 2025
    1. الضغطيتدفق سائل التبريد الغازي منخفض الحرارة والضغط من المبخر، ويسحبه الضاغط. يبذل الضاغط شغلًا على هذا الجزء من الغاز (مستهلكًا طاقة كهربائية) ويضغطه بقوة. عندما يتحول سائل التبريد إلى بخار شديد الحرارة وعالي الضغط، تكون درجة حرارة هذا البخار أعلى بكثير من درجة حرارة المحيط، مما يُهيئ الظروف المناسبة لانطلاق الحرارة إلى الخارج.2. التكثيفيدخل بخار مادة التبريد عالي الحرارة والضغط إلى المكثف (وهو عادةً مبادل حراري أنبوبي ذو زعانف يتكون من أنابيب نحاسية وزعانف من الألومنيوم). تدفع المروحة الهواء المحيط للنفخ فوق زعانف المكثف. بعد ذلك، يُطلق بخار مادة التبريد حرارة إلى الهواء المتدفق في المكثف. نتيجةً للتبريد، يتكثف تدريجيًا من الحالة الغازية إلى سائل متوسط ​​الحرارة والضغط. عند هذه النقطة، تنتقل الحرارة من نظام التبريد إلى البيئة الخارجية.3. التوسعيتدفق سائل التبريد متوسط ​​الحرارة والضغط العالي عبر قناة ضيقة عبر جهاز الخنق، الذي يعمل على خنق وخفض الضغط، كما لو كان يسد فتحة أنبوب ماء بإصبع. عندما ينخفض ​​ضغط سائل التبريد فجأةً، تنخفض درجة حرارته بشكل حاد، ويتحول إلى خليط غاز-سائل ثنائي الطور منخفض الحرارة والضغط (ضباب).4. تبخريدخل خليط الغاز والسائل منخفض الحرارة والضغط إلى المبخر، وتقوم مروحة أخرى بتدوير الهواء داخل الصندوق عبر زعانف المبخر الباردة. يمتص سائل التبريد حرارة الهواء المتدفق عبر زعانف المبخر، ويتبخر بسرعة، ويعود إلى حالة غازية منخفضة الحرارة والضغط. ونتيجةً لامتصاص الحرارة، تنخفض درجة حرارة الهواء المتدفق عبر المبخر بشكل ملحوظ، مما يؤدي إلى تبريد غرفة الاختبار. بعد ذلك، يُسحب هذا الغاز منخفض الحرارة والضغط إلى الضاغط مرة أخرى، مُفعّلاً الدورة التالية. بهذه الطريقة، تتكرر الدورة بلا نهاية. ينقل نظام التبريد الحرارة من داخل الصندوق إلى الخارج باستمرار، ويُبددها في الغلاف الجوي عبر المروحة.
    إقرأ المزيد
  • تفاصيل تشغيل غرفة اختبار الرطوبة العالية والمنخفضة تفاصيل تشغيل غرفة اختبار الرطوبة العالية والمنخفضة
    Jun 05, 2025
    تستخدم غرفة اختبار درجات الحرارة العالية والمنخفضة والرطوبة والحرارة نظام تحكم متوازن في درجة الحرارة والرطوبة لتحقيق ظروف بيئية دقيقة. تتميز بقدرات تسخين وترطيب مستقرة ومتوازنة، مما يتيح تحكمًا دقيقًا في درجة الحرارة والرطوبة في درجات الحرارة العالية. الغرفة مزودة بمنظم حرارة ذكي، وتستخدم شاشة لمس LCD ملونة لإعدادات درجة الحرارة والرطوبة، مما يسمح بإعدادات برامج معقدة متنوعة. يتم ضبط إعدادات البرنامج من خلال واجهة حوار، مما يجعل التشغيل بسيطًا وسريعًا. تختار دائرة التبريد تلقائيًا وضع التبريد المناسب بناءً على درجة الحرارة المحددة، مما يتيح التبريد المباشر وخفض درجة الحرارة في درجات الحرارة العالية. القاعدة مصنوعة من فولاذ قنوات ملحومة في إطار شبكي، مما يضمن تحمل وزن الغرفة والعاملين في الظروف الأفقية دون التسبب في عدم استواء أو تشقق في السطح السفلي. الغرفة مقسمة إلى ستة أسطح وباب بفتحة واحدة أو مزدوجة. الغلاف الداخلي مصنوع من صفيحة من الفولاذ المقاوم للصدأ، بينما الغلاف الخارجي مصنوع من صفيحة فولاذية مطلية بالألوان. مادة العزل هي رغوة البولي يوريثان الصلبة، خفيفة الوزن، ومتينة، ومقاومة للصدمات. الباب مصنوع أيضًا من صفائح فولاذية مطلية بالألوان، ومقابضه مصممة للفتح الداخلي والخارجي، مما يسمح لفريق الاختبار بفتح الباب بحرية من داخل الغرفة المغلقة. يمكن لغرفة الاختبار هذه تسجيل عملية الاختبار بأكملها وتتبعها، حيث أن كل محرك مزود بحماية من التيار الزائد والماس الكهربائي للسخان، مما يضمن موثوقية عالية أثناء التشغيل. وهي مجهزة بواجهات USB ووظائف اتصال إيثرنت، مما يلبي احتياجات العملاء المتنوعة للاتصالات وتوسيع البرامج. يقلل وضع التحكم في التبريد الشائع استهلاك الطاقة بنسبة 30% مقارنةً بوضع التحكم التقليدي في توازن التدفئة، مما يوفر الطاقة والكهرباء. تتكون الغرفة عادةً من هيكل واقٍ، ونظام قنوات هواء، ونظام تحكم، وإطار اختبار داخلي. لضمان معدل خفض درجة الحرارة ومواصفات درجة حرارة غرفة اختبار الرطوبة العالية والمنخفضة بشكل أفضل، تم اختيار وحدة تبريد متسلسلة تستخدم ضواغط تبريد مستوردة. يوفر هذا النوع من وحدات التبريد مزايا مثل التنسيق الفعال، والموثوقية العالية، وسهولة الاستخدام والصيانة. عند استخدام هذا النظام، يجب مراعاة بعض التفاصيل. ما هي هذه التفاصيل؟1. الالتزام الصارم بقواعد تشغيل النظام لتجنب انتهاك الآخرين لقواعد تشغيل النظام.٢. يُمنع تفكيك هذه الآلة وإصلاحها من قِبل غير الفنيين. في حال الحاجة إلى تفكيكها وإصلاحها، يجب أن يتم التشغيل مع فصل التيار الكهربائي، وبحضور فنيين للإشراف لتجنب الحوادث.3. عند فتح أو إغلاق الباب أو إخراج جسم الاختبار من غرفة الاختبار، لا تدع جسم الاختبار يلامس الحافة المطاطية للباب أو حافة الصندوق لمنع تآكل الحافة المطاطية.4. يجب الحفاظ على نظافة الأرض المحيطة في أي وقت، حتى لا يتم امتصاص الكثير من الغبار في الوحدة مما يؤدي إلى تدهور ظروف العمل وتقليل الأداء.٥. يجب توخي الحذر أثناء الاستخدام، وتجنب اصطدامه بأشياء حادة أو غير حادة. يجب إبقاء منتجات الاختبار الموضوعة في المختبر على مسافة معينة من منافذ شفط وإخراج هواء قناة تكييف الهواء لتجنب إعاقة دوران الهواء.٦. قد يؤدي عدم الاستخدام لفترات طويلة إلى تقليل العمر الافتراضي للنظام، لذا يجب تشغيله مرة واحدة على الأقل كل ١٠ أيام. تجنب الاستخدام المتكرر قصير المدى للنظام. بعد كل عملية تشغيل، يجب ألا تزيد مدة إعادة تشغيل النظام عن ٥ مرات في الساعة، بحيث لا تقل فترة التشغيل والإيقاف عن ٣ دقائق. لا تفتح الباب عندما يكون باردًا لتجنب تلف مانع التسرب.7. بعد كل اختبار، اضبط درجة الحرارة بالقرب من درجة الحرارة المحيطة، واعمل لمدة 30 دقيقة تقريبًا، ثم افصل مصدر الطاقة، وامسح الجدار الداخلي لغرفة العمل.8. التنظيف المنتظم للمبخر (مزيل الرطوبة): بسبب مستويات النظافة المختلفة للعينات، سوف تتكثف الكثير من الغبار والجزيئات الصغيرة الأخرى على المبخر (مزيل الرطوبة) تحت تأثير دوران الهواء القسري، لذلك يجب تنظيفه بانتظام.9. يجب صيانة المكثف بانتظام والحفاظ على نظافته. تراكم الغبار عليه يُضعف قدرة الضاغط على تبديد الحرارة، مما يؤدي إلى تعطل مفتاح الضغط العالي وإصدار إنذارات خاطئة. يجب صيانة المكثف بانتظام.١٠. نظّف جهاز الترطيب بانتظام لمنع تراكم الترسبات الكلسية، التي قد تُقلل من كفاءته وعمره الافتراضي وتُسبب انسدادًا في أنابيب إمداد المياه. لتنظيفه، انزع لوحة المبخر من حجرة التشغيل، واستخدم فرشاة ناعمة لفرك جهاز الترطيب، ثم اشطفه بالماء النظيف، وصَرِّفه على الفور. ١١. افحص قطعة قماش الاختبار الخاصة بالبصيلة المبللة بانتظام. إذا أصبح السطح متسخًا أو صلبًا، فاستبدلها لضمان دقة قراءات مستشعر الرطوبة. يجب استبدال قطعة القماش كل ثلاثة أشهر. عند استبدالها، نظّف أولًا رأس تجميع المياه، وامسح مستشعر درجة الحرارة بقطعة قماش نظيفة، ثم أعد قطعة القماش إلى مكانها. تأكد من نظافة يديك عند استبدال قطعة القماش الجديدة.
    إقرأ المزيد
  • تطبيق غرفة اختبار الرطوبة في درجات الحرارة العالية والمنخفضة
    Jun 03, 2025
    غرفة اختبار الرطوبة ودرجات الحرارة العالية والمنخفضة يلعب دورًا هامًا في العديد من الصناعات بفضل قدرته القوية على محاكاة البيئة. فيما يلي لمحة عامة عن الصناعات الرئيسية التي يستخدم فيها:❖ يتم استخدام علوم الفضاء والطيران لاختبار أداء الطائرات والأقمار الصناعية والصواريخ والمكونات والمواد الفضائية الأخرى في ظل ظروف درجات الحرارة والرطوبة الشديدة.❖ اختبار استقرار وموثوقية المكونات الإلكترونية ولوحات الدوائر والشاشات والبطاريات وغيرها من المنتجات الإلكترونية في بيئة ذات درجات حرارة عالية ودرجات حرارة منخفضة ورطوبة.❖ تقييم متانة مكونات السيارات مثل أجزاء المحرك، وأنظمة التحكم الإلكترونية، والإطارات، والطلاءات في البيئات القاسية.❖ تستخدم الدفاع والجيش اختبارات التكيف البيئي للمعدات العسكرية وأنظمة الأسلحة لضمان عملها بشكل طبيعي في ظل مجموعة متنوعة من الظروف المناخية.❖ أبحاث علوم المواد حول مقاومة الحرارة ومقاومة البرودة ومقاومة الرطوبة للمواد الجديدة، بالإضافة إلى خصائصها الفيزيائية والكيميائية في ظل الظروف البيئية المختلفة.❖ تقييم الطاقة والبيئة من حيث القدرة على التكيف البيئي ومقاومة الطقس لمنتجات الطاقة الجديدة مثل الألواح الشمسية ومعدات تخزين الطاقة.❖ اختبار النقل لقياس أداء مكونات المركبات والسفن والطائرات ومركبات النقل الأخرى في البيئات القاسية.❖ الاختبارات الطبية الحيوية لمدى استقرار وفعالية الأجهزة الطبية والأدوية في ظل التغيرات في درجات الحرارة والرطوبة.❖ يتم استخدام فحص الجودة لإجراء الاختبارات البيئية وإصدار الشهادات للمنتجات في مركز مراقبة جودة المنتج. تساعد غرفة اختبار الرطوبة في درجات الحرارة العالية والمنخفضة الشركات والمؤسسات في الصناعات المذكورة أعلاه على ضمان أن منتجاتها يمكن أن تعمل بشكل طبيعي في بيئة الاستخدام المتوقعة من خلال محاكاة الظروف القاسية المختلفة التي قد تواجهها في البيئة الطبيعية، وذلك لتحسين القدرة التنافسية للمنتجات في السوق.
    إقرأ المزيد
  • غرفة اختبار الرطوبة ودرجات الحرارة العالية والمنخفضة غرفة اختبار الرطوبة ودرجات الحرارة العالية والمنخفضة
    Jun 02, 2025
    A غرفة اختبار الرطوبة ودرجات الحرارة العالية والمنخفضة جهاز يُستخدم لاختبار أداء المنتجات في البيئات ذات درجات الحرارة العالية والمنخفضة، أو الرطبة والحارة. ويُستخدم على نطاق واسع في اختبار منتجات الفضاء، وأجهزة وعدادات المعلومات الإلكترونية، والمواد، والأجهزة الكهربائية، والمنتجات الإلكترونية، ومختلف المكونات الإلكترونية. مبدأ العمل الأساسي:❖ هيكل الصندوق: عادة ما يكون مصنوعًا من الفولاذ المقاوم للصدأ أو مواد أخرى مقاومة للتآكل، ويتم استخدام المساحة الداخلية لوضع العينة قيد الاختبار، ويتم تثبيت لوحة التحكم الخارجية والشاشة.❖ نظام التحكم في درجة الحرارة والرطوبة: بما في ذلك السخان، ونظام التبريد (مرحلة واحدة، مرحلتين أو تبريد مكدس)، وجهاز الترطيب وإزالة الرطوبة، بالإضافة إلى أجهزة الاستشعار والمعالجات الدقيقة لضمان إمكانية التحكم بدقة في درجة الحرارة والرطوبة داخل الصندوق.❖ نظام تدوير الهواء: تعمل المراوح المدمجة على تعزيز تدوير الهواء داخل الصندوق لضمان توزيع درجة الحرارة والرطوبة بشكل متساوٍ.❖ نظام التحكم: يُستخدم حاسوب دقيق أو وحدة تحكم PLC. يمكن للمستخدمين ضبط درجة الحرارة والرطوبة ووقت الاختبار المطلوبين من خلال واجهة التشغيل، وسيعمل النظام تلقائيًا على تنفيذ الشروط المحددة والحفاظ عليها. تأسست شركة Lab Companion في 4 مايو 2005، وهي شركة وطنية عالية التقنية مقرها الرئيسي في دونغقوان بمقاطعة قوانغدونغ. تمتلك الشركة اثنين من مرافق البحث والتطوير والتصنيع الرئيسية في دونغقوان وكونشان، وتغطي مساحة إجمالية قدرها 10000 متر مربع. وتنتج الشركة ما يقرب من 2000 وحدة من معدات الاختبار البيئي سنويًا. كما تدير الشركة مراكز خدمة المبيعات والصيانة في بكين وشانغهاي وووهان وتشنغدو وتشونغتشينغ وشي آن وهونغ كونغ. لطالما كرست Hongzhan جهودها لتكنولوجيا معدات الاختبار البيئي، وتسعى باستمرار إلى التميز لخلق موثوقية تلبي المعايير الدولية. يمتد عملاؤها عبر مختلف الصناعات، بما في ذلك الإلكترونيات وأشباه الموصلات والإلكترونيات البصرية والاتصالات والفضاء والآلات والمختبرات والسيارات. من تطوير المنتج إلى خدمة ما بعد البيع، يتم توجيه كل خطوة من منظور العميل واحتياجاته.
    إقرأ المزيد
1 2
ما مجموعه 2الصفحات

اترك رسالة

اترك رسالة
إذا كنت مهتما بمنتجاتنا وتريد معرفة المزيد من التفاصيل ، فالرجاء ترك رسالة هنا ، وسوف نقوم بالرد عليك في أقرب وقت ممكن.
إرسال

وطن

منتجات

واتس اب

اتصل بنا