1. الضغطيتدفق سائل التبريد الغازي منخفض الحرارة والضغط من المبخر، ويسحبه الضاغط. يبذل الضاغط شغلًا على هذا الجزء من الغاز (مستهلكًا طاقة كهربائية) ويضغطه بقوة. عندما يتحول سائل التبريد إلى بخار شديد الحرارة وعالي الضغط، تكون درجة حرارة هذا البخار أعلى بكثير من درجة حرارة المحيط، مما يُهيئ الظروف المناسبة لانطلاق الحرارة إلى الخارج.2. التكثيفيدخل بخار مادة التبريد عالي الحرارة والضغط إلى المكثف (وهو عادةً مبادل حراري أنبوبي ذو زعانف يتكون من أنابيب نحاسية وزعانف من الألومنيوم). تدفع المروحة الهواء المحيط للنفخ فوق زعانف المكثف. بعد ذلك، يُطلق بخار مادة التبريد حرارة إلى الهواء المتدفق في المكثف. نتيجةً للتبريد، يتكثف تدريجيًا من الحالة الغازية إلى سائل متوسط الحرارة والضغط. عند هذه النقطة، تنتقل الحرارة من نظام التبريد إلى البيئة الخارجية.3. التوسعيتدفق سائل التبريد متوسط الحرارة والضغط العالي عبر قناة ضيقة عبر جهاز الخنق، الذي يعمل على خنق وخفض الضغط، كما لو كان يسد فتحة أنبوب ماء بإصبع. عندما ينخفض ضغط سائل التبريد فجأةً، تنخفض درجة حرارته بشكل حاد، ويتحول إلى خليط غاز-سائل ثنائي الطور منخفض الحرارة والضغط (ضباب).4. تبخريدخل خليط الغاز والسائل منخفض الحرارة والضغط إلى المبخر، وتقوم مروحة أخرى بتدوير الهواء داخل الصندوق عبر زعانف المبخر الباردة. يمتص سائل التبريد حرارة الهواء المتدفق عبر زعانف المبخر، ويتبخر بسرعة، ويعود إلى حالة غازية منخفضة الحرارة والضغط. ونتيجةً لامتصاص الحرارة، تنخفض درجة حرارة الهواء المتدفق عبر المبخر بشكل ملحوظ، مما يؤدي إلى تبريد غرفة الاختبار. بعد ذلك، يُسحب هذا الغاز منخفض الحرارة والضغط إلى الضاغط مرة أخرى، مُفعّلاً الدورة التالية. بهذه الطريقة، تتكرر الدورة بلا نهاية. ينقل نظام التبريد الحرارة من داخل الصندوق إلى الخارج باستمرار، ويُبددها في الغلاف الجوي عبر المروحة.
1. بطاريات الليثيوم أيون: يتم إجراء اختبارات درجات الحرارة العالية والمنخفضة خلال جميع مراحل البحث والتطوير الخاصة ببطاريات الليثيوم أيون، من المواد والخلايا إلى الوحدات.
٢. مستوى المادة: تقييم الخصائص الفيزيائية والكيميائية الأساسية للمواد الأساسية، مثل مواد الأقطاب الموجبة والسالبة، والإلكتروليتات، والفواصل، عند درجات حرارة مختلفة. على سبيل المثال، اختبار مخاطر طلاء الليثيوم لمواد الأنود عند درجات حرارة منخفضة، أو فحص معدل الانكماش الحراري (MSDS) للفواصل عند درجات حرارة عالية.
٣. مستوى الخلية: محاكاة برد الشتاء في المناطق الباردة (مثل -٤٠ إلى -٢٠ درجة مئوية)، واختبار بدء التشغيل في درجات حرارة منخفضة، وسعة التفريغ، وأداء معدل الشحن للبطارية، وتوفير بيانات تدعم تحسين الأداء في درجات الحرارة المنخفضة. تُجرى اختبارات الشحن والتفريغ الدورية في درجات حرارة عالية (مثل ٤٥ و٦٠ درجة مئوية) لتسريع عملية الشيخوخة والتنبؤ بعمر البطارية الطويل ومعدل احتفاظها بالسعة.
٤. خلايا الوقود: تخضع خلايا وقود غشاء تبادل البروتون (PEMFC) لمتطلبات صارمة للغاية فيما يتعلق بإدارة الماء والحرارة. تُعدّ إمكانية التشغيل البارد عقبة تقنية رئيسية أمام تسويق خلايا الوقود. تُحاكي غرفة الاختبار بيئة أقل من درجة التجمد (مثل -٣٠ درجة مئوية) لاختبار إمكانية تشغيل النظام بنجاح بعد التجمد، ولدراسة الضرر الميكانيكي الذي تُلحقه بلورات الجليد بالطبقة الحفزية وغشاء تبادل البروتون.
٥. المواد الكهروضوئية: يجب أن تعمل الألواح الشمسية في الهواء الطلق لأكثر من ٢٥ عامًا، متحملةً ظروف الليل والنهار القاسية، بالإضافة إلى فصول السنة الأربعة. من خلال محاكاة فرق درجات الحرارة بين الليل والنهار (مثل ٢٠٠ دورة من -٤٠ درجة مئوية إلى ٨٥ درجة مئوية)، يمكن اختبار الإجهاد الحراري لشريط لحام التوصيلات الكهربائية لخلايا البطارية، وشيخوخة مواد التغليف (EVA/POE) واصفرارها، وموثوقية الترابط بين مختلف المواد المغلفة، وذلك لمنع انفصال الطبقات وتلفها.
غرف اختبار حديثة ذات درجات حرارة عالية ومنخفضة لم تعد غرف تغيير درجة الحرارة مجرد غرف بسيطة، بل منصات اختبار ذكية تجمع بين وظائف متعددة. غرفة الاختبار المتطورة مزودة بنوافذ مراقبة وفتحات اختبار، مما يسمح للباحثين بمراقبة العينات آنيًا أثناء تغيرات درجة الحرارة.