High Temperature Charged Aging Chamber-OVEN-96TO-2C

Custom Solution

Brief Introduction

High Temperature Charged Aging Chamber is also called Constant Temperature Aging Room or High Temperature Aging Room, is for high-performance electronic products to simulate a high temperature and harsh environment test, which is an important experimental equipment to improve product stability and reliability. It is an important production process for each production enterprise to improve product quality and competitiveness. The equipment is widely used in electronic, electrical, computer, communication, biopharmaceutical, security, lighting and other fields. The High Temperature Charged Aging Chamber is usually composed of air duct system, temperature control system, indoor test architecture, etc.

Technical Features:

Dimensions (mm)	Width	Height	Depth
Useful	310	1100	290
Overall	1448	2210	1090

Temperature range

RT°C~+150°C

Homogeneity and Regulation:

Temperature fluctuation:

≤±0.5°C

Temperature deviation:

<±2.0°C

Temperature uniformity:

<2°C

Temperature rise time:

 \leq 3°C/min (RT°C \rightarrow +150°C) The whole process of nonlinear heating, no-load)

Power supply specifications:

AC 380 V, 50 HZ, 3 ∮ 5 wire

Rated current:

AC 15 A, power 7 KW

This machine is dedicated to the above marked power supply, please use according to the rated power distribution. If the use area is changed, please contact our company. Service phone 400-628-2786.

Other parameters:

Controller model:

C100

Indicator:

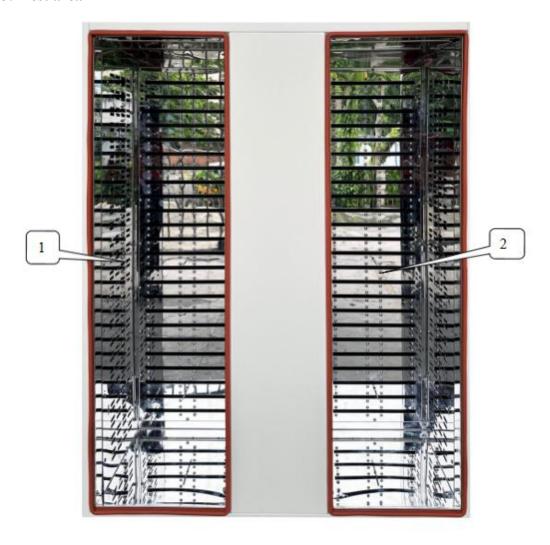
Three-color indicator

With exhaust heat dissipation device:

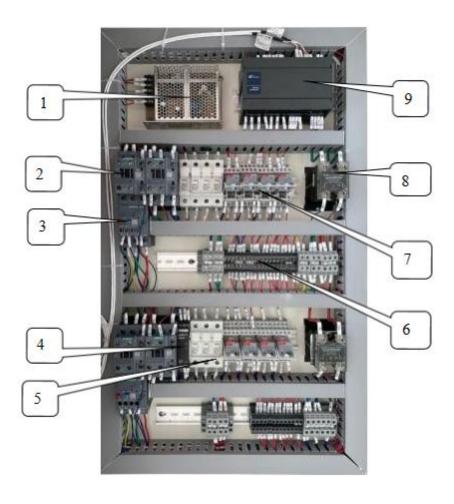
If the deviation between the temperature in the box and the set temperature reaches more than 5 degrees, the heat dissipation fan will start and bring excess heat out of the test area.

Appearance Introduction and Description:

1. Front and side of the machine


Number	Name	Illustrate
1	Tricolor light	Green light means running, yellow standby, red fault
2	Controller panel	The intelligent operating panel
3	Cooling fan	Ventilation and heat dissipation
4	Door lock	Press the button on the handle and pull the handle to open the door
5	Placing rack	Place the wireless keyboard and mouse

2. Control panel


Number	Name	Illustrate
1	Controller	Touch screen programmable controller
2	Emergency stop switch	Used to connect the device and cut off power supply
3	Overtemperature	Set the upper temperature limit of the test area1
4	Overtemperature	Set the upper temperature limit of the test area2
5	The USB interface	Used to copy data related to curves or documents.

3. Test area

Number	Name	Specification
1	Test area1	Used to place test products
2	Test area2	Used to place test products

4. Power distribution room

Number	Name	Number	Name
1	Dc power supply	6	Connector terminal
2	Ac contactor	7	Intermediate relay
3	Thermal overload relay	8	Solid state relay
4	Underinverting phase protector	9	Temperature controller
5	Fuse		

Test Report:

Temperature°C Scatter	85°C	125°C
A	85.4	125.7
В	85.1	125.3
С	84.7	125.5
D	84.5	125.8
E	84.9	126.0
F	85.0	126.1
G	85.3	125.7
Н	85.5	125.5
О	85.9	125.3
Temperature deviation	0.9	1.1
Temperature uniformity	1.4	0.8