Rapid Temperature Change Test Chamber

TC-80-5

Custom Solution

Brief Introduction

Rapid temperature change test chamber is suitable for instruments, chemistry, plastic, electronics, food, clothing, vehicles, metal, chemical, building materials, aerospace and other parts or machine. With rapid temperature change, gradient adaptability test and temperature stress screening test functions, helps to test the performance and change under the proposed conditions, for the purposes of product design, improvement, identification and factory inspection.

Particularities:

- 1. The structure design of the Test Chamber is advanced and reasonable, and the supporting products and functional components have the international advanced level, which can meet the long-term, stable, safe and reliable production needs.
- 2. It can apply temperature stress and realize the change rapidly between the desired temperature values (such as $+85\sim40^{\circ}$ C temperature range, the lifting temperature rate is 10° C/min).
- 3. It has a large temperature control range, which can provide: high and low temperature rapid change test, one or more temperature change test (cycle); It can also carry out low temperature(ultra-low temperature) and high temperature test separately.
- 4. It adopts the perfect modeling design, the appearance has excellent texture and beautiful atmosphere.
- 5. The control system adopts special control system, with strong expansibility, simple operation, accurate control.

Technical Features:

Dimensions (mm)	Width	Height	Depth	
Useful	400	500	400	
Overall	680	1710	990	

Temperature range

from -70°C to +150°C

Homogeneity and Regulation:

Temperature fluctuation:

≤±0.5°C

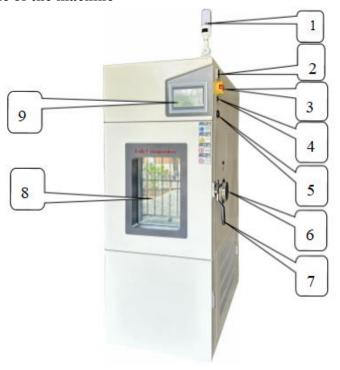
Temperature deviation:

<±2.0°C

Temperature uniformity:

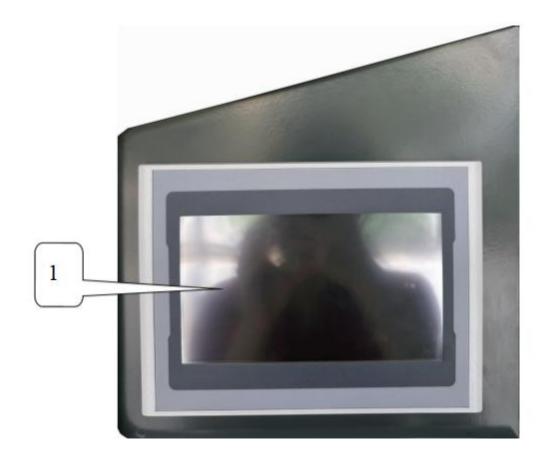
<2°C

Temperature rise time:


 \geq 5°C/min (-40°C \rightarrow +85°C) The whole process of linear heating, full load 10KG aluminum ingot)

Temperature drop time:

 \geq 5°C/min (+85°C \rightarrow -40°C) The whole process of linear cooling, full load 10KG aluminum ingot)


Appearance Introduction and Description:

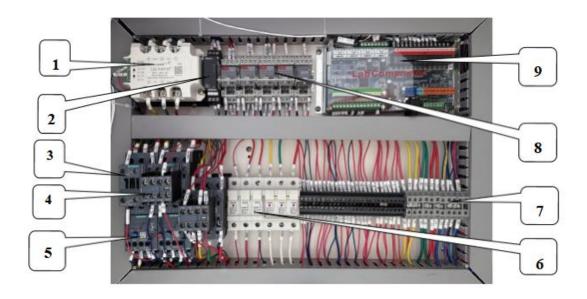
1. Front and side of the machine

Number	Name	Illustration	
1	Three color lights	Green running, yellow standby, red fault	
2	Over temperature Setting	To Set the upper temperature limit in the test area	
3	Scram switch	Used to connect the device and cut off the power supply	
4	USB interface	Used to copy curves or document-related data	
5	Network interface	The computer can be connected to the controller through the network cable for remote operation	
6	The test hole	An external power supply can be plugged in from the test hole for live product testing	
7	The door lock	Pull the vertical door to open it	
8	Glass window	To observe the inner workings of the laboratory	
9	The control panel	Operation panel for machine operation	

2. Control panel

Number	Name	Illustration
1	Controller	Touch screen programmable controller
		(Refer to controller manual)

3. Test area


Number	Name	Illustration	
1	Thermal resistance sensor	Used for panel overtemperature sensing	
		the temperature of the inner chamber	
2	Thermal resistance sensor	Used for the controller to sense the	
		temperature of the inner chamber	
3	sealant	Heat preservation and air leakage	
		prevention	
4	Air outlet	Test area circulates air outlet	
5	Sample rack track	Used to secure the sample holder	
6	Sample holder	Used to place test products	

4. The cooling machine room

Number	Name	Illustration
1	Compressor	Compression refrigeration
2	Oil separator	Separate refrigerant and refrigerant oil
3	Liquid storage tank	To store refrigerant
4	Filter dryer	Filter out debris from the cooling system

5. Power distribution room

Number	Name	Number	Name
1	Power regulator	6	Fuse
2	Underinverting phase protector	7	Connector terminal
3	Ac contactor	8	Intermediate relay
4	Auxiliary contact	9	Temperature controller
5	Thermal overload relay		

Test Report:

Temperature Sensor °C	-60°C	-40°C	-20°C	0°C	85°C	125°C
1	-59.4	-40.0	-20.5	0.2	85.6	125.4
2	-58.9	-40.3	-20.1	0.6	85.2	125.7
3	-59.2	-40.6	-20.6	0.7	85.3	125.9
4	-59.5	-40.2	-20.7	0.5	85.7	126.0
5	-59.9	-40.0	-20.5	0.9	85.5	126.3
6	-60.0	-39.8	-20.8	0.8	85.9	126.5
7	-60.2	-39.5	-21.0	1.0	86.0	126.1
8	-60.0	-39.8	-20.8	1.2	86.1	126.0
9	-59.8	-40.0	-20.6	1.5	86.3	125.7
Temperature deviation	1.1	0.6	1.0	1.5	1.3	1.5
Temperature uniformity	1.3	1.1	0.9	1.3	1.1	1.1